
Newton sketches: Estimating Node Intimacy in
Dynamic Graphs Using Newton’s Law of Cooling

Qizhi Chen†, Ke Wang‡, Aoran Li†, Yuhan Wu†, Tong Yang†, Bin Cui†

†National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University, Beijing, China

‡Yale University, New Haven, CT, USA

Abstract—1 Dynamic graphs are gaining importance in many
real-world applications based on different graph queries. Due to
the large volume and high dynamicity, people resort to compute
approximations to answer graph queries. However, previous work
primarily evaluates the relationship between nodes based on
frequency, which is not sufficient in many cases. We observe
that this relationship varying process is highly similar to the
water cooling process in nature. Based on the observation, we
formulate a new concept Intimacy with Newton’s law of cooling,
to illustrate the relationship between nodes. Currently, there is
no prior algorithm tailored for Intimacy estimation. Because
Intimacy varies in every time unit, the main challenge lies
in how to record and update the Intimacy efficiently. In this
paper, we propose a novel technique named Newton-Observe to
address this challenge. The key idea of Newton-Observe is that
we only decay the Intimacy when we observe/query it. Based
on Newton-Observe, we develop a series of Newton sketches to
answer three fundamental tasks of Intimacy in dynamic graphs.
We theoretically prove that the Newton sketch can estimate the
Intimacy within an additive constant error to the real Intimacy.
Our experiments on real-world datasets and synthetic datasets
show that Newton-Observe outperform the strawman solution by
up to 570× smaller ARE and improve the throughput by up to
1.62×. All source codes are open sourced at Github anonymously.

I. INTRODUCTION

A. Background and Motivations

Dynamic graph is omnipresent in social network, recom-
mendation systems, network traffic and so on, representing
large-scale entities and their relationship. More and more
applications are implemented based on graph queries, such
as community detection [8], [16], [37], personalized recom-
mendations [21], network traffic monitoring [12], [20], and
so on [6], [24], [25], [29], [32], [33]. In the big data era,
dynamic graphs not only grow in scale but also in dynamicity,
making it both time and memory consuming to answer these
graph queries. A list of pioneering algorithms [19], [26], [34],
[45] have been proposed to compute approximations for the
challenging dynamic graph queries, such as node query, edge
query [19], [34], triangle counting [18] and so on. In this
work, we focus on edge query, i.e., measuring the relationship
between nodes.

1Co-primary authors: Qizhi Chen, Ke Wang, and Aoran Li. Corresponding
author: Tong Yang (yangtongemail@gmail.com).

Previous work primarily evaluates the relationship between
nodes based on frequency2, which is not sufficient in many
cases. In a social network, it’s likely that people are engaged
in different communities and have different friends in different
life stages. The relationship between people cannot be simply
profiled by their interaction frequency, without considering
their interaction recency. For example, Alice once had an old
friend Bob but lost interaction ten years ago. Now She just
makes a new friend Carol and communicates a lot. Though the
frequency of interaction with Bob may be much larger than
Carol, her current relationship with Carol is much stronger
than her relationship with Bob. In a recommendation system,
the interest of people may change from time to time. For
example, in an E-commerce platform, a new couple may
search a lot about baby products. However, when their babies
grow up, we should no longer recommend baby products. Rec-
ommendation system algorithms inherently require extensive
historical data, yet temporal information must also be given
significant attention. In network traffic, the network traffic
graphs are rapidly and constantly changing. The elephant flows
may change from edges to edges, which also can not be
simply profiled by frequency. Recent anomalies may indicate
the presence of abnormal interactions or information leaks.

In order to monitor the prompt relationship between nodes,
we need to focus more on recent interactions, while older
edges are considered of less importance, as the community or
network topology formed by them are out-of-date. It remains a
problem how to quantify the relationship. One straightforward
solution is to adopt sliding windows algorithms3, which is
widely used in streaming graph algorithms and systems [17],
[31]. Sliding windows have three major flaws, which our
subsequent definition avoids. First, elements outside the win-
dow are completely forgotten, which is unrealistic in the
real world. Second, it is difficult to distinguish the order of
elements within the window; as mentioned earlier, frequency
information is not always sufficient. Third, implementation
is challenging; due to the dynamic nature of the streaming
graph and the inherent complexity of the graph query process,

2Frequency in this paper refers to the number of interactions between two
nodes

3The sliding-window algorithms focus on the data in the most recent T
seconds.

Te
m
pe
ra
tu
re

t1 t2 Time

Hot water
Temperature

(a) Temperature variation

In
tim
ac
y

t1 t2 Time

Interaction Intimacy
Virtual Intimacy

Q
ue
ry

(b) Intimacy variation

Fig. 1: Temperature/Intimacy variation

running a sliding window model on a dynamic graph is also
computationally ineffective. Another typical metric related
to time, namely persistency [43], cannot solve this problem
either. Persistency only counts the number of periods where
an element appears but has no sense of recency.

In this paper, we adopt a new way to address this problem.
By observing some important regularities of the relationship
varying process, we define a new metric, namely Intimacy, to
profile this process. On one hand, intimacy should be time-
sensitive; past interactions and the most recent ones are not
equal, with newer interactions having a greater impact on
intimacy. Considering continuous time, a characteristic re-
flected in intimacy is that it decays over time. The relationship
between nodes will fade away with time if there is no more
interaction. On the other hand, the relationship between nodes
should strengthen upon new interactions. Intimacy should ac-
curately profile both the decay and strengthen process. Our key
observation is that we find that the process is highly similar
to the water cooling process in nature: A cup of hot water
cools down naturally if there is no hot water coming; Every
time we pour some hot water into the cup, the temperature
rises.

Based on our above observation, our first contribution is to
define Intimacy according to the Newton’s law of cooling [3],
which the water temperature variation follows. Figure 1 illus-
trates the variation of temperature and Intimacy, which follows
the same trend. Besides the fundamental properties, there are
also many detailed similarities between the water cooling
process and the decay process of relationship (Intimacy) as
shown in Figure 1. Both temperature/Intimacy decrease fast
when the temperature/Intimacy is high and decrease slowly
when the temperature/Intimacy is low. The temperature of the
object will fall to zero eventually if there is no hot water
coming in any more. Friends will finally become strangers if
there is no interaction any more.

Our second contribution is to address three fundamental
tasks in graph queries about Intimacy: edge query (e.g.,
relationship measurement), global top-k query (e.g., network
traffic monitoring), and local top-k query (e.g., personalized
recommendations). Edge query is to query the Intimacy of an
edge. Global top-k query is to find out the top-k edges with
highest Intimacy on the whole graph. Local top-k query is to
find out the top-k edges with highest Intimacy incident on a
certain node. There are two primary requirements to design a
new data structure to answer these three tasks: 1) sub-linear

memory cost to fit into the limited-size fast memory [39],
[44]; 2) constant update time [36] to match the fast change of
dynamic graphs.

B. Our Solution

To address the above three kinds of fundamental tasks,
we propose a series of Newton sketches: CM version, CU
version, and Space-Saving version. The key challenge of
Newton sketches is how to record and update the Intimacy,
which is continuously changing with time. The naive solution
is to update the Intimacy of all edges in every time unit, where
the computation cost is intolerable.

Our first technique is called Decay operation Per Update
(DPU), which significantly reduces the computation cost of
the naive solution. DPU performs decay operation per update
rather than per time unit. DPU records the Intimacy and
the most recent timestamp. When a new interaction arrives,
DPU only decays the corresponding Intimacy according to the
interval time, and updates the timestamp. The DPU solution
seems effective but there are imperceptible shortcomings both
in memory cost and computation cost. For the computation
cost, because we only update its corresponding edge timestamp
for every interaction, different edges have different times-
tamps. When comparing the Intimacy between two edges, it
cannot directly compare the values we recorded. Instead, it
needs to first align the Intimacy to the same timestamp, and
then compare, which incurs extra complexity. It causes extra
costs in top-k query, where we need to maintain a heap and
perform massive comparisons. For the memory cost, it records
an auxiliary data, the most recent timestamp, to compute
Intimacy.

To further improve both the time and space efficiency of
DPU, we propose the second technique: Newton-Observe.
The key idea is that we only decay the Intimacy when
we query it. In essence, Intimacy states that the older the
interaction is, the lower important it is. Instead of maintaining
the Intimacy and timestamp in Newton sketches, we propose
the virtual Intimacy which implies the newer the interaction
is, the more important it is, as shown in Figure 1. For every
arriving interaction, we increment the virtual Intimacy by a
value, which is positively related to the timestamp. Only when
we want to query the Intimacy, will we decay the virtual
Intimacy to calculate the Intimacy. Therefore, we transform
a fluctuating Intimacy into a monotonously increasing virtual
Intimacy, as shown in Figure 1(b). By recording the virtual
Intimacy, we can well address both shortcomings in DPU.
We don’t need to record a timestamp but only the virtual
Intimacy. To compare the Intimacy of two edges, we can
directly compare their virtual Intimacy at any given time.

Based on Newton-Observe, we develop Newton sketches:
Count-Min version (Newton-CM) and Conservative-Update
version (Newton-CU) to answer the edge query. We combine
the technique of Newton-Observe and two-dimensional Count-
Min sketch [34] to present Newton-CM. Newton-CU optimizes
Newton-CM by exploiting the technique of Conservative-
Update [14]. To answer the two top-k queries, we combine the

technique of Newton-Observe and Two-dimensional Space-
Saving to present Newton sketches: Space-Saving version
(Newton-SS). Finally, we also propose the Elastic version
(Newton-Elastic) which can simultaneously address the afore-
mentioned tasks. The experiments show that Newton sketches
can efficiently answer the above queries and Newton-Observe
outperforms DPU by up to 570× smaller ARE on global top-k
query, 6.3× smaller ARE on local top-k query and improve
the throughput by up to 1.62×.

Key Contributions:
• We are the first to propose and strictly define the concept

of Intimacy between nodes in a dynamic graph, to profile
the recent relationship between different nodes.

• We propose the Newton-Observe technique and develop
Newton sketches to answer three typical graph queries,
edge query, global top-k query, and local top-k query, in
terms of Intimacy.

• We theoretically prove that Newton sketches can estimate
the Intimacy within a constant error and extensive ex-
periments confirm that Newton sketches outperforms the
baseline solution in all three tasks.

II. RELATED WORK

In this section, we give a brief introduction about the related
work. There are two kinds of work for dynamic graphs. The
first is sketch synopses such as CM sketches [5], CU sketches
[14] and so on [13], [35], [38], [47], which proven to be
effective data structures in general data streams [10], [11],
[23], [30], [41], [46]. Such sketches also work for the case of
graph stream, where they consider edges as items but ignore
the connection between different items. These algorithms only
support edge weight query but not any query related to
topology of the graph. The second work such as TCM [34],
gSketches [45], gMatrix [26] and GSS [19], supports multiple
queries in the dynamic graph. Due to space limitation, we
focus on the second kind of work in this section.

TCM is the state-of-the-art work. TCM compresses a graph
stream G = (V,E) into a graph sketch Gh = (Vh, Eh) using
a hash function H(.) with the range size M . TCM maps v
to the node H(v) in Vh and the edge e =

−−−→
(s, d) to the edge−−−−−−−−−→

(H(s), H(d)) in Eh. The weight of the edge in Eh is the sum
of all weights of edges mapping to it. Specifically, to represent
the graph sketch, TCM uses a M×M adjacency matrix where
the bucket in row H(s), column H(d) denotes the weight of
edge

−−−−−−−−−→
(H(s), H(d)) in Eh, that is, each bucket is a counter.

gMatrix is a variant of TCM but uses reversible hash functions
to generate graph sketches.

Similar to TCM, GSS compresses a graph stream G =
(V,E) to a graph sketch Gh = (Vh, Eh). Nodes and edges
are aggregated in Gh. The major difference of GSS and TCM
is the data structure to represent graph sketch Gh. GSS uses
a M ×M matrix and an extra buffer B to store the graph
sketch, where each bucket in the matrix consists of a counter
and a fingerprint pair. The edge e =

−−−→
(s, d) is mapped to

bucket in row H(s), column H(d) with a fingerprint pair. If

the bucket is already occupied by other edges, GSS stores the
edge in buffer B. In order to restrict the size of buffer, GSS
proposes square hashing. In this technique, GSS maps a node
to r rows/columns, thus mapping an edge to r2 buckets and
store the edge in the first empty one among these buckets.

All the above works measure the connection of two nodes
by frequency. However, measuring the connection using fre-
quency is not sufficient in many cases and it’s important to take
time into consideration [13], [15], [27]. Significant items [42]
combines frequency and persistency to define the significance
and put forward an algorithm named LTC to find significant
items, which moves a step forward while the significance
definition makes it very limited to some certain applications
related to persistency. Sliding window model [17], [18] also
takes recency into consideration, but due to the dynamic
changing nature of the stream graph, the inherent complexity
of the graph query process, running sliding window model
on dynamic graph is computationally ineffective. Decaying
exponentially with time has been studied in data stream [13]
but it requires great efforts to apply it to dynamic graphs.
To the best of our knowledge, there is no prior work dealing
with Intimacy or other metrics decaying by time on dynamic
graphs.

III. DEFINITION OF INTIMACY USING NEWTON’S
LAW OF COOLING

In this section, we first define graph streams as well as
dynamic graphs, and then formulate the Intimacy on dynamic
graphs (Section III-A). Then we present three fundamental
tasks of the Intimacy on dynamic graphs (Section III-B).
Notations used in this section and later are given in Table I.

TABLE I: Notations and Definitions

Notations Definitions
G = (V,E) Dynamic graph
α(> 0) Attenuation coefficient
H Temperature of the surroundings
t Current time
ti Time of interaction/item i
T (t) Temperature of the object at time t
I0 Initial Intimacy
I(s, d, t) Intimacy of the directed edge (

−→
s, d) at time t

A. Definition of Intimacy

A graph stream [34] is a sequence of items S =
{s0, s1, ...sn}, where each si = (−−−−−→v1,i, v2,i, ti) indicates a
directed edge e = (−−−−−→v1,i, v2,i) from node v1,i to node v2,i at the
timestamp of ti, for any i 6= j, ti 6= tj . Therefore, the graph
stream forms a dynamic node set V and a dynamic edge set
E. We use G = (V,E) to denote the dynamic graph, where
G changes with the arrival of items.

To formulate the Intimacy on dynamic graphs, we first
observe the Intimacy variation process in real-world dynamic
graphs. In a social network, the Intimacy between people will
fade away with time if there is no interaction and the Intimacy
will increase upon new interactions. Therefore, decaying with
time and increasing upon new interactions are two fundamental

parts of Intimacy. We observe that this process is highly similar
to the water cooling process in nature, which follows Newton’s
law of cooling. The water cools with time going by and heats
upon new hot water coming. Inspired by Newton’s law of
cooling, we give the formal definition of Intimacy.

Newton’s law of cooling states that the rate of heat loss
of a body is directly proportional to the difference in the
temperatures between the body and its surroundings, which
is formalized as:

T ′(t) = −α(T (t)−H) (1)

where α denotes heat attenuation coefficient and H denotes
the temperature of the surroundings. Based on Equation (1),
we can get the following equations.

T ′(t)

T (t)−H
= −α∫

T ′(t)

T (t)−H
dt =

∫
−αdt

ln(T (t)−H) = −αt+ c

T (t1)−H
T (t0)−H

= e−α(t1−t0)

T (t1)−H = (T (t0)−H)e−α(t1−t0)

(2)

Without loss of generality, we assume all objects will cool
down until the temperature becomes 0, i.e., H equals to 0.

Therefore, the equation can be simplified to:

T (t1) =
T (t0)

eα(t1−t0)
(3)

Given a sequence of items (
−→
s, d, ti), i = 0, 1, ..., n on edge

(
−→
s, d), we define Intimacy of edge (

−→
s, d) at time t, as the sum

of Intimacy of all items on it.

I(s, d, t) =
n∑
i=0

I0
eα(t−ti)

(4)

The underlying assumption of the definition is that all
items share the same initial Intimacy denoted as I0 and
the same attenuation coefficient α, that is, each item comes
with the same importance and gets stale at the same rate.
Though frequency and recency are not explicitly shown in
our definition, Intimacy takes them into consideration in an
elegant way: If α is set to 0, then Intimacy is degenerated
to frequency; If α is set to a large number, then Intimacy
is only related to the several most recent items. Because of
the exponentially decaying property, we can derive the upper
bound of Intimacy:

I(s, d, t) =
n∑
i=0

I0
eα(t−ti)

≤
+∞∑
i=0

I0
eαi

=
I0e

α

eα − 1
≤ I0 · (1 +

1

α
)

(5)

Intimacy timestamp

DPU

Virtual
Intimacy

Newton-Observe

Cell timestamp... ...

Fig. 2: Basic Unit

B. INTIMACY QUERY TASKS

There are three fundamental tasks in dynamic graph queries:
edge query, global top-k query, and local top-k query. We
formalize these tasks as following.

Given a graph stream S and its dynamic graph G = (V,E).

• Edge Query: Given an edge (
−→
s, d), return its Intimacy if

it exists in E, otherwise return 0.
• Global Top-K Query: Return the top-k edges with

highest Intimacy on the whole graph. Note that we only
need to compare the relative sizes of Intimacy of all the
edges on the graph. The initial Intimacy I0 doesn’t impact
the results of the global top-k query.

• Local Top-K Query: Given a certain node, return the
top-k incident edges with highest Intimacy. Similar to
global top-k query, we only need to compare the relative
sizes of Intimacy of all the incident edges. The initial
Intimacy I0 doesn’t impact the results of the local top-k
query.

• Subgraph Query: Given a subgraph, return the sum of
the Intimacy of all edges within it.

IV. THE NEWTON SKETCH

In this section, we first present the basic unit of the Newton
sketches. Based on the basic unit, we propose three ver-
sions of Newton sketches: Count-Min version (Newton-CM),
Conservative-Update version (Newton-CU), Space-Saving ver-
sion (Newton-SS) and Elastic version (Newton-Elastic) to
produce a dynamic graph sketch for three graph query tasks.

A. Basic Unit

The basic unit of Newton sketches is called a cell, which
must contain a numerical field for Intimacy/virtual Intimacy
and may contain some other fields such as ID and timestamp
according to the different versions of Newton sketches, as
shown in Figure 2. We first show the update operation of a cell
when a new item arrives. From the definition, the Intimacy is
constantly changing with time. A naive solution is to record
the whole sequence of items on it (

−→
s, d, ti), i = 0, 1, ..., n

and update the Intimacy of all cells in Newton sketches for
every unit time, which is unacceptable both in computation
cost and memory cost. We first propose Decay-Per-Update
solution to simplify the calculation, which greatly improves
the insertion throughput and reduce the memory cost from the
whole sequence of items to 16 bytes for each edge. However,
there are some imperceptible shortcomings of DPU solution.
We further propose Newton-Observe to improve the seemingly
effective DPU solution.

1) Decay-Per-Update Solution: In the DPU solution, a cell
must contain a field for the Intimacy and a field for the
timestamp. For each item, it only update the corresponding
unit and leave all other units unchanged. Only when we query
a certain edge, is the accurate Intimacy calculated.

Formally, suppose there is a sequence of items (
−→
s, d, ti), i =

0, 1, ..., n− 1 on edge (
−→
s, d), and a new item (

−→
s, d, tn) comes,

we can calculate the Intimacy in the following way.

I(s, d, tn) =
n−1∑
i=0

I0
eα(tn−1−ti)

× e−α(tn−tn−1) + I0

=
I(s, d, tn−1)
eα(tn−tn−1)

+ I0

(6)

According to Equation (6), to calculate the current Intimacy
I(s, d, tn), we only need to record the previous Intimacy
I(s, d, tn−1), and the most recent timestamp tn−1. Every
time a new item comes, we can decay the previous Intimacy
according to the interval time tn− tn−1, and add I0 to get the
current Intimacy. At the first glance, there is no memory and
computational redundancy in this solution, but actually both
the time and space cost can be significantly reduced by our
following solution.

2) Newton-Observe Solution: In Newton-Observe, a cell
contain a field for the virtual Intimacy but don’t need the
timestamp. Different from Decay-Per-Update solution decay-
ing Intimacy for every coming item, Newton-Observe solution
performs the decay operation only when we indeed query the
intimacy. Essentially, Equation (6) states the principle that the
earlier the item comes, the smaller the Intimacy is and the
newly arrived item has the Intimacy I0. In Newton-Observe
solution, instead of decaying the previous Intimacy when
inserting a new item, we assign a larger virtual Intimacy for
the newly coming item. We can directly obtain the following
equation from Equation (6).

I(s, d, tn)eαtn = I(s, d, tn−1)eαtn−1 + I0e
αtn (7)

Though Equation (7) seems to have no great difference
with Equation (6), it helps to further improve both memory
and computation efficiency. With Equation (7), we name
I(s, d, tn)eαtn as virtual Intimacy, denoted as v. Every time a
new item(

−→
s, d, t) comes, we add I0eαt to the virtual Intimacy.

v : = v + I0e
αt (8)

There is no need to store the most recent timestamp. It’s
also easy to calculate the Intimacy from the virtual Intimacy
given any timestamp t.

I(s, d, t) =
v

eαt
(9)

Figure 1 illustrates the differences between Intimacy and
virtual Intimacy, i.e., Intimacy changes over time while virtual
Intimacy only changes at every insertion. In the example, we
only need to perform one decay when we query the Intimacy
using Newton-Observe while it takes four decay using DPU.

Therefore, maintaining virtual Intimacy is much easier than
Intimacy.

Compared with DPU, the technique of Newton-Observe
not only saves the memory, but also greatly simplifies the
computation. When performing comparison in DPU, the In-
timacy of the two edges needs to be aligned to the same
timestamp while in Newton-Observe, we can directly compare
the virtual Intimacy. Therefore, Newton-Observe is especially
beneficial in the top-k query which needs multiple comparison
for every insertion. Based on the basic unit, we develop several
sketches to address the three fundamental tasks illustrated in
Section III-B.

B. Newton Sketches: CM Version

First we propose Newton sketches: Count-Min version
(Newton-CM). Newton-CM compresses a graph stream G =
(V,E) into a graph sketch Gh = (Vh, Eh) using a hash func-
tion H(.) with the range size M . Without any auxiliary data
structure, Newton-CM can only support edge query but not
top-k query because it doesn’t maintain the information of the
source and the destination node of the edge. To support global
top-k query, we need an extra min-heap which maintains the
source node, destination node, and virtual Intimacy v of the
current top-k edges on the graph. However, with the extra
min-heap, it still does not support local top-k query.

As shown in Figure 3, Newton-CM with parameters I0, α
is represented by a two-dimensional array with width M and
depth M : cell[0][0], ..., cell[M − 1][M − 1]. cell[i][j] denotes
the virtual Intimacy of the directed edge (

−→
i, j) in Eh.

Initially, we choose l hash functions Hi(.), i = 1, 2, ..., l,
whose values are ranged from [0,M). Then we can generate
the graph sketch with the following operations.
Initialization: Each field of the array is initialized to zero.
Edge Insertion: When a graph stream item(

−→
s, d, t) comes,

we first compute l hash functions for both nodes s and d:
H1(s), ...,Hl(s), H1(d), ...,Hl(d). In another word, we map
node s to l different nodes in Vh and node d to l different nodes
in Vh, thus mapping edge (

−→
s, d) to the l2 edges in Eh. Then

we update these l2 edges using Newton-Observe, that is, we
add the I0et to the cell[H1(s)][H1(d)], ..., cell[Hl(s)][Hl(d)]
respectively.
Edge Query: When querying the Intimacy of a given edge
(
−→
s, d) at the timestamp of t, we find out the minimum Intimacy

of the l2 edges in Eh, i.e., the minimum virtual Intimacy vm
of cell[H1(s)][H1(d)], ..., cell[Hl(s)][Hl(d)] and return vm

eαt .
Global Top-K Query: To perform global top-k query, besides
an extra min-heap, we need to add an additional step for
the edge insertion. For each incoming item s = (−−−→v1, v2, t),
we first insert s to Newton-CM, and then query the virtual
Intimacy: vs. If s is in the heap, we add I0e

t to the virtual
Intimacy of s in the heap. If vs is not in the heap but it is
larger than the virtual Intimacy of the minimum element of
the heap, the minimum element is evicted from the heap and
s is inserted into the heap. To report the global top-k query,
we report the top-k items with the highest virtual Intimacy in
the heap. Maintaining the virtual Intimacy vs rather than the

new
element

hash

hash

2-dim Array

T

Newton
Observe Update

Hit buckets

TS D

CM version

T

hash

hash

key

value

key

value

Find empty cell

2-dim Array

SS Array
Not hit

S D

SS: Case A

T

key

value

key

value

2-dim Array

SS Array Hit

S D

hash

hash

SS: Case B

T

key

value

key

value

Find minimum cell

2-dim Array

SS Array
Not hit

S D

hash

hash

SS: Case C

Fig. 3: Newton sketches

Intimacy (DPU solution) in the heap achieves much higher
throughput. Note that the Intimacy of the item changes with
time. When using DPU solution, if we want to compare with
the minimum element in the heap, we need to recalculate the
decayed Intimacy of the minimum element. If the replacement
happens, i.e., to insert an item into the min-heap, we need to
recalculate multiple Intimacy of the items stored in the heap.
When using Newton-Observe, since the virtual Intimacy in the
heap remains unchanged with time, we can directly compare
the virtual Intimacy to decide their relative magnitude.
Subgraph Query: We can return the sum of the intimacy of all
edges within a subgraph, which is meaningful. For example,
communities in social networks are such subgraphs, and our
algorithm can estimate the activity level of these communities.
Other Queries: Based on our data structure, we can support a
wide range of graph queries. For instance, node queries, where
the intimacy of a row or a column can serve as an estimate for
all out-degrees or in-degrees of a node, with multiple hashing
reducing the error of this task. For path queries, depending on
the task, we can aggregate the intimacy of all edges on the
path by summing them up or taking the minimum value to
address the path query. However, not all graph algorithms can
be integrated with the concept of intimacy, which opens up
many questions for exploration.

The overall memory cost of Newton-CM is O(|E|). We
usually set M = β×

√
|E|, where β is a constant, approximate

to 1. To achieve better performance, we can set a large β
(proved in Section V-A). When the memory is not sufficient,
we can also use smaller M with the sacrifice of accuracy. For
edge insertion, the time cost O(l2), where l is a constant. f
we want to support global top-K query, the insertion time cost
is O(l2 + log2K), where both l and k are constants. Overall,
Newton-CM can achieve constant update speed.

C. Newton Sketches: CU Version

To reduce the over-estimation in Newton-CM, we pro-
pose Newton sketches: Conservative-Update version (Newton-
CU). Newton-CU is the same as Newton-CM except for

edge insertion. Instead of updating all the hashed edges in
Eh, Newton-CU only updates some edges. When a graph
stream item (

−→
s, d, t) arrives, we first find out the mini-

mum virtual Intimacy vmin of the l2 edges, i.e., vmin =
min{cell[H1(s)][H1(d)], ..., cell[Hk(s)][Hk(d)]}. Then for
all the l2 edges whose virtual Intimacy is less than vmin+I0et,
we set the virtual Intimacy of these edges to vmin+ I0et, i.e.,
cell[Hi(s)][Hj(d)] = max{cell[Hi(s)][Hj(d)], vmin + I0e

t},
for all the i, j = 1, 2, ..., l. Newton-CU achieves the same
memory and time cost as Newton-CM.

D. Newton Sketches: Space-Saving Version

Both Newton-CM and Newton-CU are primarily designed
for edge query and cannot support local top-k query. We fur-
ther propose Newton sketches: Space-Saving version (Newton-
SS), which can support all three query tasks. As shown in
Figure 3, a Newton-SS with parameters I0, α is represented
by a two-dimensional array with width M and depth M . We
use bucket to denote the array: bucket[0][0], ..., bucket[M −
1][M − 1]. Each bucket has m cells. Each cell consists of
two fields: key, value, where key consists of the nodes of the
edge (

−→
s, d) in G (not hashed edge in Gh) and value records

virtual Intimacy of the edge.
We choose one hash function H(.) whose value is ranged

from [0,M). Then we can generate the graph sketch with the
following operations.
Initialization: Each field of the array is initialized to zero.
Edge Insertion: When a graph stream item (

−→
s, d, t) comes, we

first map the node s to the node H(s) in Vh and the node d to
the node H(d) in Vh, thus mapping the edge (

−→
s, d) to the edge

(
−−−−−−−→
H(s), H(d)) in Eh. Then we scan the bucket[H(s)][H(d)].

1) As shown in Case A, if (
−→
s, d) is not in the

bucket[H(s)][H(d)] and there are empty cells. We randomly
choose one empty cell and set the cell’s key to (

−→
s, d), value

to I0eαt.
2) As shown in Case B, if (

−→
s, d) is in the

bucket[H(s)][H(d)], we add I0e
αt to the value of the

cell.

3) As shown in Case C, if (
−→
s, d) is not in the

bucket[H(s)][H(d)] and there is no empty cell. We find out
the cell with the smallest value. Then we add I0e

αt to the
value and replace the key with (

−→
s, d).

Edge Query: When querying the Intimacy of a given edge
(
−→
s, d) at the timestamp t, we compare (

−→
s, d) with the keys in

the bucket[H(s)][H(d)]. If (
−→
s, d) is in the bucket, we get the

corresponding value v and return v
eαt . Otherwise, we return

0 which means we don’t know its Intimacy.
Global Top-K Query: To perform global top-k query, we
traverse all the cells in all the buckets and report the edges
with the top-k highest value, i.e., virtual Intimacy.
Local Top-K Query: To perform local top-k query of
node s, we traverse all the cells incident to node s, i.e, all
the cells in the bucket[H(s)][j], j = 0, 1, ...,M − 1 and
bucket[i][H(s)], i = 0, 1, ...,M − 1, and report the top-k
edges incident to s. More specifically, for every cell in the
bucket[H(s)][j], j = 0, 1, ...,M − 1, only those whose source
node in key is exactly s are regarded as edges incident to node
s. For every cell in the bucket[i][H(s)], i = 0, 1, ...,M − 1,
only those whose destination node in key is exactly s are
regarded as edges incident to node s

The overall memory cost of Newton-SS is also O(|E|),
and we usually set M = β ×

√
|E|
m , where β is a constant,

approximate to 1. When the memory is fixed, there is a trade
off between M and m, i.e., the number of buckets and the
number of cells in a bucket. We experimentally study the
trade off and find setting m = 8 achieves a balance. For edge
insertion, the time cost of Newton-SS is O(m), where m is a
constant, so Newton-SS achieves constant update speed.

E. Newton Sketches: Elastic Version

Newton-Elastic can simultaneously solve edge queries,
global top-k queries, and local top-k queries. Inspired by the
Elastic Sketch algorithm [40] for general data streams, we
extended it to address dynamic graph problems. It consists of
two parts: the heavy part and the light part. The heavy part
of Newton-Elastic stores the global Top-k. Unlike a typical
Elastic Sketch, we employed a structure similar to Newton-SS,
enabling Newton-Elastic to address local Top-k issues through
querying the rows and columns obtained from hashes. The
replacement strategy for the heavy part adapts Elastic Sketch
to Newton-Observe, using votes against Virtual Intimacy to
manage replacements. The light part of Newton-Elastic is
Newton-CU, which allows it to handle edge queries. While
Newton-SS may miss edges, Newton-Elastic can always return
results from the light part.
Initialization: Each field of the array is initialized to zero.
Edge Insertion: The first two insertion scenarios of Newton-
Elastic are consistent with those of Newton-SS. H owever,
when there is no empty cell for the third scenario, the
replacement strategy differs. Drawing from Elastic Sketch,
Newton-Elastic records how many times a ”vote against” has
occurred for each bucket, using our Newton-Observe method.
When the virtual intimacy of the ”votes against” is eight times

greater than the current bucket’s minimum cell, the minimum
cell is moved to the light part, and the ”votes against” are
cleared (the factor of eight is a hyperparameter introduced
by Elastic Sketch, which has shown good performance in our
experiments).
Query: Global Top-K Query and Local Top-K Query in
Newton-Elastic are similar to those in Newton-SS. The dif-
ference lies in that, during each query, the items in the heavy
part are not pure values and require querying in the light part’s
Newton-CU to compensate for the error. In the Edge Query
task, if the target is not found in the heavy part, Newton-SS
can only return 0, whereas Newton-Elastic can query from the
light part and return the result.

V. ERROR BOUNDS OF NEWTON SKETCHES

In this section, we analyse the error bounds of the Newton
sketches. Due to the limitation of the space, we only present
the proofs for Newton-CM and Newton-SS. The proof for
Newton-CU are similar to the proof of Newton-CM.

A. Error Bound of Newton-CM

In this section, we theoretically prove that Newton-CM can
estimate the Intimacy within an additive constant error to
the real Intimacy in Theorem 1. For sketches on frequency,
which increases monotonously, the estimation error always
increases monotonously with items coming. Because the stale
information is automatically discarded in Intimacy, Intimacy
promise the potential to be estimated within a constant error.
We first give two lemmas. Based on two lemmas, we prove
the Theorem 1.

Lemma 1. For any edge a = (
−→
s, d), at any time t, the

estimated Intimacy Îa is equal or larger than Ia: Îa ≥ Ia.

Proof. For any edge, we can find l2 counters to estimate
its Intimacy. Consider edge a and let Xa(i, j) (i, j =
1, 2, ..., l) to denote the contribution from other edges to
counter[Hi(s)][Hj(d)]. We can easily get Xa(i, j) is always
equal or larger than zero as virtual Intimacy is always larger
than zero.

counter[Hi(s)][Hj(d)] = Iaeαt +Xa(i, j) ≥ Iaeαt (10)

Since all the l2 counters are equal or larger than Iaeαn, we
can conclude that:

min
i,j

(counter[Hi(s)][Hj(d)]) ≥ Iaeαt (11)

Thus, we get:

Îa =

min
i,j

(counter[Hi(s)][Hj(d))

eαt
≥ Ia (12)

Lemma 2. At time t, for any edge a = (
−→
s, d), E(Xa(i, j)) <

I0l
2eα(t+1)

M2α .

Proof. Each edge are mapped to l2 cells, so edge a
′
(a
′ 6= a)

will be mapped to counter[Hi(s)][Hj(d)] with the probability

of l2

M2 . At time t, the upper bound of virtual Intimacy is∑t
k=0 I0e

αk. We can derive the expectation of Xa(i, j) as
follows:

E[Xa(i, j)] ≤
l2

M2

t∑
k=0

I0e
αk

=
I0l

2(eα(t+1) − 1)

M2(eα − 1)

<
I0l

2eα(t+1)

M2(eα − 1)

<
I0l

2eα(t+1)

M2α

(13)

Theorem 1. For any edge a = (
−→
s, d), the estimated Intimacy

Îa has the following guarantee: with the probability of at least
1− δ, Îa < Ia + I0l

2e1+α

M2α , where δ = e−l
2

.

Proof. At any time t, use Markov’s inequality and we can get:

Pr(Xa(i, j) ≥ e ·
I0l

2eα(t+1)

M2α
) ≤ E(Xa(i, j))

e · I0l2eα(t+1)

M2α

<
I0l

2eα(t+1)

M2α

e · I0l2eα(t+1)

M2α

<
1

e

(14)

For different i, j, Xa(i, j) is independent to each other. With
multiplication theorem of probability, we conclude that:

Pr(∀i, j Xa(i, j) ≥ e ·
I0l

2eα(n+1)

M2α
) < (

1

e
)l

2

= e−l
2

= δ

(15)
Let δ = e−l

2

, with the probability of at least 1− δ:

Îa =

min
i,j

(counter[Hi(s)][Hj(d)])

eαn

=

min
i,j

(Iaeαn +Xa(i, j))

eαn

< Ia + e · I0l
2eα(n+1)

M2αeαn

= Ia +
I0l

2e1+α

M2α

(16)

Note that the error bound is a constant given all fixed
parameters I0, l,M, α. To achieve a smaller error bound, the
most straightforward and efficient way is increasing M , i.e.,
increasing the memory usage. Because finding the minimum
counter can be done in linear time, the time to produce the
estimation is O(l2) = O(ln(1/δ)).

B. Error Bound of Newton-SS

In this section, we derive the error bound for global top-k
queries in Newton-SS. Suppose there are N different edges,
with Intimacy I1, I2, ..., IN and M2 buckets. Each bucket has
m cells. We prove that at least (1 − δ)k global top-k edges

will retain in the buckets with the fixed probability (Theorem
5).

Lemma 3. Suppose we want to put X identical balls into
Y different boxes and make sure there are at most Z balls
in each box. There are

∑b X
Z+1 c
r=0 (−1)rCrY C

X−(Z+1)r
X+Y−(Z+1)r−1

combinations to satisfy the conditions.

Proof. We use generation function (1+u+u2+ ...+uZ)Y to
solve the problem. Each box can contain zero to D balls and
there are B boxes. There are X balls in total, so we can get
the number of cases by calculating the coefficient of uX .

(1 + u+ ...+ uZ)Y = (
1− uZ+1

1− u
)Y

= (1− uZ+1)Y (1− u)−Y

=

+∞∑
r1=0

(−1)r1Cr1Y u
(Z+1)r1

+∞∑
r2=0

Cr2Y+r2−1u
r2

(17)
The coefficient of uX , i.e., the number of combinations sat-

isfying the conditions, is
∑b X

Z+1 c
r=0 (−1)rCrY C

X−(Z+1)r
X+Y−(Z+1)r−1.

Theorem 2. The probability of a bucket being mapped
by at most n different edges is P1 = M−2N ·∑b N

n+1 c
r=0 (−1)rCrM2C

N−(n+1)r
N+M2−(n+1)r−1.

Proof. Edges are independent to each other and will be
mapped each bucket with the same probability. We have
N different edges and M2 buckets, so the number of
all the cases is M2N . Using Lemma 3, we can calcu-
late the number of cases that satisfy our assumption is∑b N

n+1 c
r=0 (−1)rCrM2C

N−(n+1)r
N+M2−(n+1)r−1. Then we can get the

conclusion.

Lemma 4. The sum of values stored in the cells of a bucket,
denoted as S, is equal to the sum of all the Intimacy of edges
mapped to this bucket.

Lemma 5. The value of minimum cell (min val) is no greater
than b Smc.

Lemma 6. Any edge, which is mapped to the bucket and has
Intimacy larger than the min val of the bucket, must retain in
the bucket.

Theorem 3. Suppose the Intimacy satisfies zipfian distribution
with parameter αz and each bucket is mapped by at most n
different edges. If m > 1 + 1

1−αz [(k+ n− 1)(k
k+n−1)

αz − k]
and the bucket is accessed by only one global top-k edge, the
global top-k edge must retain in this bucket.

Proof. From Lemma 4, 5, 6, if the Intimacy of a global top-
k edge is larger than min val of the mapped bucket, it must
retain in the bucket. We consider the lowest Intimacy, denoted
as Ik, among all the global top-k edges Ii, i = 1, 2, ..., k.
Because each bucket is accessed by only one global top-k

edge and at most n different edges, the min val of the bucket
mapped by edge Ik is less than

∑k+n−1
i=k Ii
m .

With the assumption that m > 1 + 1
1−αz [(k + n −

1)(k
k+n−1)

αz − k], i.e., each bucket has relatively sufficient
cells to store edges mapped to it, we can derive the following
in-equations:

m− 1

kαz
>

1

(1− αz)
[(k + n− 1)1−αz − k1−αz]

=

∫ k+n−1

k

1

xαz
dx

>

k+n−1∑
i=k+1

1

iαz

(18)

Because Intimacy follows the zipfian distribution, Equa-
tion (18) essentially states

Ik >
∑k+n−1
i=k+1 Ii
m− 1

>

∑k+n−1
i=k Ii
m

> min val (19)

Therefore, we prove that the Intimacy of Ik is greater than
the min val. As other global top-k edges have larger Intimacy,
they will retain in the mapped buckets because of the same
reason.

Theorem 4. The probability of more than (1−δ)k buckets are
mapped by only one global top-k edge is greater than V !Uδk

V kU !
if each bucket is mapped by no more than n different edges,
where V = N

n , U = V − (1− δ)k.

Proof. We consider the worst case that there are V buckets,
each of them is accessed by n different edges where different
global top-k edges are most likely to meet each other (mapped
to the same bucket). Every global top-k edge can access at
most V different buckets. Therefore, the number of different
permutations of global top-k edges is no more than V k. We
split the global top-k edges into global top-(1 − δ)k edges
and the left δk edges. The number of cases that the global
top-(1− δ)k edges do not meet other global top-k edges is no
smaller than A

(1−δ)k
V (V − (1 − δ)k)δk. The probability of at

least (1−δ)k buckets being mapped by only one global top-k
edge (P2) is at least:

P2 ≥
A

(1−δ)k
V · (V − (1− δ)k)δk

V k

=

(
V

(1−δ)k
)
· [(1− δ)k]! · (V − (1− δ)k)δk

V k

=
V !U δk

V kU !
(U = V − (1− δ)k)

(20)

Theorem 5. Suppose the Intimacy satisfies zipfian distribution
with parameter αz and m > 1+ 1

1−αz [(k+n−1)(
k

k+n−1)
αz−

k]. With probability of at least V !UδkP1

V kU !
, at least (1−δ)k global

top-k edges will retain in the buckets.

Proof. Combining Lemma 2, 3, 4, we can draw the conclu-
sion.

VI. EXPERIMENTAL EVALUATION

In this section, we show the efficiency of Newton sketches
by comparing the Newton-Observe with DPU solution. We
use DPU-CM, DPU-CU, and DPU-SS for the DPU based
Newton sketches and Newton-CM, Newton-CU, and Newton-
SS for the Newton-Observe based Newton sketches. Newton-
Elastic is based on Newton-Observe. We start by explaining
the experimental environments (Section VI-A). We evaluate
the performance of Newton sketches over two real-world data
sets and one synthetic data set. The results show that Newton
sketches can sufficiently achieve considerable performance on
all the dynamic graph query tasks (Section VI-B). We set l = 2
and m = 8 as our default setting according to the experimental
results. We set I0 = 1, α = 0.000001, which means every time
an edge comes, the Intimacy of the edge increase by I0 = 1
and after 1

α = 1000000 units of time, the Intimacy of the edge
decays by e times.

A. Experimental Setup

1) Data Sets and Setup:

1) CAIDA: This data set comes from CAIDA Anonymized
Internet Trace 2016 [4], which consists of 10M IP packets.
We regard each IP packet as an item of a graph stream, that
is, we regard the source IP address as the source node, the
destination IP address as the destination node and the index
as the timestamp. This graph contains 411509 vertices and
440449 static directed edges.

2) Social: This data set is a temporal network of interactions
on the stack exchange web site [28], which consists of 10M
items. Each item is represented by a directed edge (u, v, t)
which means user u answers user v’s question at the timestamp
of t. This graph contains 1256732 vertices and 9107956 static
directed edges.

3) MovieLens: The well-known MovieLens dataset [22],
which includes numerous user ratings of movies, is used to
test the performance of our algorithm on bipartite graphs
like those found in recommendation system networks. The
original dataset does not contain duplicate edges; we randomly
generated arrival times and occurrence frequencies for each
edge, constructing a dataset containing 100M items.

4) Friendster: Another social network dataset collected
by Stanford [28], which includes community information, is
utilized to test the performance of our algorithm on subgraph
query tasks. The original dataset does not contain duplicate
edges; we randomly generated arrival times and occurrence
frequencies for each edge, constructing a dataset containing
100M items. Additionally, this dataset provides high quality
community information, which we utilize to test the reliability
of our algorithm in subgraph query tasks.

5) Synthetic: We generate 5 data sets using the well-known
graph generator GTGraph [7], each has 100M items. We first
use the R-MAT model [9] to generate a large network with
the power-low degree distribution. Then we set the times
of appearance of each edge using Zipfian distribution and
randomly scatter these edges. We vary the skewness of Zipfian

4 8 12 16
Memory(MB)

0

4

8

12

A
A

E
Newton-CM Newton-CU DPU-CM DPU-CU

4 8 12 16
Memory(MB)

0

25

50

75

(a) CAIDA (b) Social

Fig. 4: Edge Query AAE vs. memory size

distribution from 1.4 to 3.0 with a step of 0.4 to generate 5
data sets. The generated graph contains 10000 vertices and
about 1 million static directed edges.

Implementation: We implement all versions of Newton
sketches in C++. We use Bob Hash [1] as our hash function.
We run all the programs on a server with 18-core CPUS (36
threads, Intel CPU i9-10980XE @3.00 GHz) with 32 kB/32
kB instruction/data cache, 1 MB L2 cache, and 24.75 MB L3
cache, and 128 GB total system memory. Codes of Newton
sketches are open-sourced at GitHub anonymously [2].

2) Metrics:

AAE / ARE: AAE/ARE measures the absolute/relative
accuracy of the reported Newton sketches in edge queries.
Given a query q, the absolute error(AE) and the relative
error(RE) are formalized as:

AE(q) =
∣∣∣f̂(q)− f(q)∣∣∣ ,RE(q) =

∣∣∣f̂(q)− f(q)∣∣∣
f(q)

(21)

where f̂(q) and f(q) are the estimated value of q and the real
value of q respectively. Given a query set, the average absolute
error(AAE)/average relative error(ARE) is the average of the
AE/RE over all queries on it. Note that AAE is influenced by
I0 and α much greater than ARE, we use ARE as our metric
in most of our experiments and only use AAE as our metric
in the experiments Section VI-B1.

Precision: Precision measures the ratio of correctly reported
answers to the number of reported answers. Suppose the
correct top-k set is ψ, the estimated top-k set is φ, the precision
is defined as |φ∩ψ||φ| .

Throughput: Throughput evaluates the insertion speed of
Newton sketches. We use Millions operations per second
(Mops) to denote the throughput.

B. Experimental Results

1) Experiments on edge query:
In this section, we evaluate the performance of Newton-

CM, Newton-CU and Newton-Elastic on edge query. The
performance of Newton-SS is not showed because it cannot
answer the edge query on items which are not stored in it.
First, we study the performance on different memory sizes,
i.e., with different M . Second, we study the performance on
the synthetic data sets with different skewness. Third, we study
the performance varying the number of hash functions. In this

10 20 30 40 50 60 70 80 90 100
Memory Usage (KB)

0

2

4

6

8

10

AA
E

Newton-CM
DPU-CM

Newton-CU
DPU-CU

Elastic

(a) Friendster

10 20 30 40 50 60 70 80 90 100
Memory Usage (KB)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

AA
E

Newton-CM
DPU-CM

Newton-CU
DPU-CU

Elastic

(b) MovieLens

Fig. 5: Edge Query AAE vs. memory size

series of experiments, we query all the edges in the network
where edges with low Intimacy are of little importance but
greatly influence ARE, so we compare the AAE rather than
ARE in this section.

1) AAE vs. memory size. In this experiment, we vary the
memory size from 1MB to 16MB for the CAIDA and Social
datasets, while for the Friendster and MovieLens datasets,
we use from 10KB to 100KB. Although these two datasets
involve processing more edges, the graphs after deduplication
are not large, requiring less memory than CAIDA and Social.
As shown in Figure 4 and Figure 5, with the memory size
increasing, the AAE decreases fast and converges to zero.
The AAE in the social data set is greater than the AAE in
the CAIDA data set with the same memory size because the
social data set is much more sparse than CAIDA data set and
the Intimacy on it is much more evenly distributed. Newton-
Observe improves the AAE up to 4.1× comparing with DPU
solution. When the memory size is small, Newton-Observe
performs much better than the DPU solution and when the
memory size increases, the gap gradually narrows. CU always
outperforms CM, and Elastic always performs slightly better
than CU.

2) AAE vs. skewness.

1.4 1.8 2.2 2.6 3.0
Skewness

10
4

10
3

10
2

AA
E

Newton-CM
DPU-CM

Newton-CU
DPU-CU

Elastic

Fig. 6: Edge Query AAE vs.
skewness

In this experiment, we
set the memory to 16MB.
From Figure 6, it is observ-
able that the relative order
of the five algorithms re-
mains consistent. The rela-
tionship between AAE and
Skewness does not appear
to be significant, as our al-
gorithm is always related to
the number of edges, and
the number of edges after deduplication in these generated
datasets is similar. This also proves that our algorithm can
operate across various graph structures.

2) Experiments on global top-k query:

In this section, we evaluate the performance of all algo-
rithms on global top-k query. First, we study the global top-k
query performance on different memory sizes and different k.
Then, we study the influence of the number of hash functions
to the Newton-CM and Newton-CU and the influence of the

4 8 12 16
Memory(MB)

0.00

0.25

0.50

0.75

A
R

E

4 8 12 16
Memory(MB)

0

5

10

15

A
R

E

4 8 12 16
Memory(MB)

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

4 8 12 16
Memory(MB)

0.00

0.25

0.50

0.75

1.00

Pr
ec

is
io

n

(a) CAIDA (b) Social (c) CAIDA (d) Social

Newton-CM Newton-CU Newton-SS DPU-CM DPU-CU DPU-SS

Fig. 7: Global Top-k ARE, Precision vs. memory size

40 50 60 70 80 90 100 110 120 130 140 150 160
Memory Usage (KB)

10
1

10
0

10
1

10
2

AR
E

Newton-CM
DPU-CM
Newton-CU

DPU-CU
Newton-SS

DPU-SS
Elastic

(a) Friendster

40 50 60 70 80 90 100 110 120 130 140 150 160
Memory Usage (KB)

10
0

9.2 × 10
1

9.4 × 10
1

9.6 × 10
1

9.8 × 10
1

Pr
ec

is
io

n

Newton-CM
DPU-CM

Newton-CU
DPU-CU

Newton-SS
DPU-SS

(b) Friendster

40 50 60 70 80 90 100 110 120 130 140 150 160
Memory Usage (KB)

10
0

10
1

10
2

AR
E

Newton-CM
DPU-CM
Newton-CU

DPU-CU
Newton-SS

DPU-SS
Elastic

(c) MovieLens

1000 3000 5000 7000 9000 11000 13000 15000
Memory Usage (KB)

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Newton-CM
DPU-CM
Newton-CU

DPU-CU
Newton-SS

DPU-SS
Elastic

(d) MovieLens
Fig. 8: Global Top-k ARE, Precision vs. memory size

1.4 1.8 2.2 2.6 3.0
Skewness

0.0

2.5

5.0

7.5

10.0

A
R
E

1.4 1.8 2.2 2.6 3.0
Skewness

0.00

0.25

0.50

0.75

1.00

Pr
ec
is
io
n

Newton-CM
Newton-CU

Newton-SS
DPU-CM

DPU-CU
DPU-SS

Fig. 9: Global Top-k ARE, Precision vs. skewness

cell number to the Newton-SS. At last, we study the influence
of the data set skewness on global top-k query.

1) ARE, Precision vs. memory size. In this experiment,
we set k = 10000 and vary the memory size from 1MB
to 16MB for the CAIDA and Social datasets, while for
the Friendster and MovieLens datasets, we use from 10KB
to 200KB. Figure 7 shows the results. With the memory
increases, the ARE decreases and precision increases. Newton-
Observe improves the precision by up to 1.45× and achieves
the smaller ARE by up to 570× compared with DPU. The
performance of Newton-Elastic is not very good. We believe
this is reasonable. Because, in fact, the other algorithms are
specifically designed for this task: for example, Newton-CM
requires the addition of a heap. Whereas, Newton-Elastic is
a single algorithm that addresses all tasks simultaneously and
has already shown excellent performance in edge query tasks.
Therefore, while its accuracy in global Top-k tasks is not the
highest, it is still acceptable.

2) ARE, Precision vs. k. In this experiment, we set memory
size to 640KB for CAIDA data set and 16MB for social
data set and vary the k from 100 to 10000. As shown in

Figure 10, with the k increasing, the ARE of all algorithms
increases and the precision decreases. Both ARE and precision
of Newton-SS and DPU-SS in the social data set increase with
k increasing, which seems counter-intuitive. The reason is that
in the social data set, there is little difference in Intimacy
of edges. In this experiment, though we do accurately store
the real top-k edges in Newton-SS, we don’t report most of
them as top-k edges when k is small because they are easily
overwhelmed by other edges. When k increases, then these
real top-k edges are reported, thus increasing the precision.
Newton-Observe improves the precision by up to 2.25× and
achieves the smaller ARE by up to 7.14× compared with DPU.

3) ARE, Precision vs. skewness. In this experiment, we
set memory size to 128KB and k = 1500 and study the
performance of Newton sketches on the synthetic data sets. As
shown in Figure 9 Newton-Observe improves the precision by
up to 1.46× and improves the ARE by up to 3.21× compared
with DPU. With the skewness increasing, the ARE of all
algorithms decreases and the precision increases.

3) Experiments on local top-k query:
Because Newton-CM and Newton-CU don’t support local

top-k query, we only evaluate the efficiency of Newton-SS
and Newton-Elastic in this section. Because not every node
connects more than k other nodes and typically one node has
several to tens of nodes with high Intimacy, we only query
the nodes which connect more than k nodes. First, we study
the impact of the memory size to local top-k query. Then, we
study the performance of Newton-SS local top-k query with
different k. At last, we study the influence of cell numbers on
local top-k query.

1) ARE, Precision vs. memory size. In this experiment, we
set k = 5 and vary the memory size from 128KB to 640KB
for Friendster dataset. It can be seen from in Figure 11, that

2000 4000 6000 8000 10000
K

0

2

4

6

A
R

E

2000 4000 6000 8000 10000
K

0

3

6

9

A
R

E

2000 4000 6000 8000 10000
K

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

2000 4000 6000 8000 10000
K

0.00

0.25

0.50

0.75

1.00

Pr
ec

is
io

n

(a) CAIDA (b) Social (c) CAIDA (d) Social

Newton-CM Newton-CU Newton-SS DPU-CM DPU-CU DPU-SS

Fig. 10: Global Top-k ARE, Precision vs. k

128 256 384 512 640
Memory(KB)

10
1

10
0

10
1

AR
E

Newton-SS DPU-SS Elastic

(a) ARE

128 256 384 512 640
Memory(KB)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AR
E

Newton-SS DPU-SS Elastic

(b) Precision

Fig. 11: Lobal Top-k ARE, Precision vs. memory size

2 4 6 8 10
K

0

5

10

15

A
R
E

2 4 6 8 10
K

0.0

0.5

1.0

Pr
ec
is
io
n

Newton-SS-CAIDA
DPU-SS-CAIDA

Newton-SS-social
DPU-SS-social

Fig. 12: Lobal Top-k ARE, Precision vs. k

Newton-Observe has a clear optimization effect. However,
because Elastic aims to accomplish various tasks with limited
memory, its performance in local Top-k tasks is not as good
as that of SS, which is specifically designed for this task.

2) ARE, Precision vs. k. In this experiment, we set memory
size to 8MB and vary the k from 2 to 10. As shown in
Figure 12, Newton-Observe improves the precision by up to
1.17× and achieves the smaller ARE by up to 1.45×. With
the k increasing, the ARE and precision remains almost the
same in the CAIDA data set while in the social data set, the
ARE decreases and the precision increases. This is because
the Intimacy in the social data set is more evenly distributed.

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

op
s)

Newton DPU

CM-2
CM-4
CU-2
CU-4
SS-4
SS-8

Fig. 13: Throughput vs. # cells or # hash functions

4) Experiments on subgraph query:

32 36 40 48 64 72 80 88 96 100
Memory Usage (KB)

10
1

10
0

AA
E

Newton-CM
DPU-CM

Newton-CU
DPU-CU

Elastic

Fig. 14: Subgraph Query AAE
vs. memory size

In this section, we use
the community information
provided by the Friendster
dataset to test the perfor-
mance of various algorithms
on the subgraph intimacy
task. Newton-CM, Newton-
CU, and Newton-Elastic all
support this task. We set
the memory from 32KB to
100KB and measured five
communities, taking the av-
erage value of the AAE. It can be observed from Figure 14
that the overall trend is consistent with the edge query task.

5) Experiments on throughput:
In this section, we evaluate the insertion speed of Newton

sketches on the CAIDA data set. Note that the number of
cells in the bucket influences the throughput of Newton-SS
and the number of hash functions influences the throughput
of Newton-CM and Newton-CU, we set m = 4, 8 for Space-
Saving version (denoted as SS-4, SS-8) and set l = 2, 4
for CM version and CU version (denoted as CM-2, CM-
4, CU-2 and CU-4) to compare the throughput. As shown
in Figure 13, Newton-Observe improves the throughput up
to 62% compared with DPU solution. With the number of
hash functions increasing, the throughput of Newton-CM and
Newton-CU drops by 25% and 31%. With the number of cells
in the bucket increasing, the throughput of Newton-SS remains
almost the same because either 4 cells or 8 cells can be fit into
one cache line.

VII. CONCLUSION
In this paper, we observe that the relationship varying

process in dynamic graphs is highly similar to the water
cooling process in nature. Based on the observation, we define
a new concept, namely Intimacy, using Newton’s law of
cooling. We propose the technique named Newton-Observe
and present Newton sketches using Newton-Observe to solve
the typical tasks in dynamic graph queries. The key idea of
Newton-Observe is that we can only decay the Intimacy when
we actually query it. Experiments show that Newton sketches
can achieve well performance with limited memory usage in
three typical tasks.

ACKNOWLEDGEMENT

We thank all anonymous reviewers for their help in improv-
ing this paper. This work is supported by National Key R&D
Program of China (No. 2022YFB2901504), and National Nat-
ural Science Foundation of China (NSFC) (No. U20A20179,
62372009).

REFERENCES

[1] Bob Hash source codes. http://burtleburtle.net/bob/hash/evahash.html.
[2] Newton sketches. https://github.com/NewtonSketch/NewtonSketch.
[3] Newton’s law of cooling. https://en.wikipedia.org/wiki/Newton%27s

law of cooling.
[4] The caida anonymized 2016 internet traces. http://www.caida.org/data/

overview/.
[5] An improved data stream summary: the count-min sketch and its

applications. Journal of Algorithms, 55(1):58–75, 2005.
[6] Discovering hierarchical subgraphs of k-core-truss. Data Science and

Engineering, 3(2):136–149, June 2018.
[7] D. Bader and K. Madduri. Gtgraph: A synthetic graph generator suite.

2006.
[8] J. W. Berry, B. Hendrickson, R. A. LaViolette, et al. Tolerating the

community detection resolution limit with edge weighting. Phys. Rev.
E, 83:056119, May 2011.

[9] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recursive Model
for Graph Mining, pages 442–446. 2004.

[10] P. Chen, D. Chen, L. Zheng, J. Li, and T. Yang. Out of many we are
one: Measuring item batch with clock-sketch. In Proceedings of the
International Conference on Management of Data (SIGMOD), 2021.

[11] F. M. Choudhury, Z. Bao, J. S. Culpepper, and T. Sellis. Monitoring
the top-m rank aggregation of spatial objects in streaming queries. In
2017 IEEE 33rd International Conference on Data Engineering (ICDE),
pages 585–596, 2017.

[12] G. Cormode, T. Johnson, F. Korn, et al. Holistic udafs at streaming
speeds. In SIGMOD, page 35–46, 2004.

[13] G. Cormode, F. Korn, and S. Tirthapura. Exponentially decayed
aggregates on data streams. In Proceedings of the 2008 IEEE 24th Inter-
national Conference on Data Engineering, ICDE ’08, page 1379–1381,
USA, 2008. IEEE Computer Society.

[14] C. Estan and G. Varghese. New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice. TOCS,
21(3):270–313, 2003.

[15] A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz. The
changing nature of network traffic: Scaling phenomena. SIGCOMM
CCR, 28(2):5–29, apr 1998.

[16] J. Gao, C. Zhou, J. Zhou, and J. X. Yu. Continuous pattern detection
over billion-edge graph using distributed framework. In 2014 IEEE 30th
International Conference on Data Engineering, pages 556–567, 2014.

[17] X. Gou, L. He, Y. Zhang, et al. Sliding sketches: A framework using
time zones for data stream processing in sliding windows. In SIGKDD,
KDD ’20, page 1015–1025, New York, NY, USA, 2020. Association for
Computing Machinery.

[18] X. Gou and L. Zou. Sliding window-based approximate triangle
counting over streaming graphs with duplicate edges. In SIDMOD,
SIGMOD/PODS ’21, page 645–657, New York, NY, USA, 2021.
Association for Computing Machinery.

[19] X. Gou, L. Zou, C. Zhao, and T. Yang. Fast and accurate graph stream
summarization. In ICDE, pages 1118–1129, 2019.

[20] S. Guha and A. McGregor. Graph synopses, sketches, and streams: A
survey. VLDB Endowment, 5(12):2030–2031, 2012.

[21] Q. Guo, F. Zhuang, C. Qin, et al. A survey on knowledge graph-based
recommender systems, 2020.

[22] F. M. Harper and J. A. Konstan. The movielens datasets. ACM
Transactions on Interactive Intelligent Systems (TiiS), 2015.

[23] Y. Izenov, A. Datta, F. Rusu, and J. Shin. Online sketch-based
query optimization. In Proceedings of the International Conference on
Management of Data (SIGMOD), 2021.

[24] P. Jia, P. Wang, J. Tao, and X. Guan. A fast sketch method for mining
user similarities over fully dynamic graph streams. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 1682–
1685, 2019.

[25] U. Kang, B. Meeder, E. E. Papalexakis, and C. Faloutsos. Heigen:
Spectral analysis for billion-scale graphs. TKDE, 26(2):350–362, 2014.

[26] A. Khan and C. Aggarwal. Query-friendly compression of graph
streams. In ASONAM, page 130–137, 2016.

[27] T. Q. Lee, Y. Park, and Y.-T. Park. A time-based approach to effective
recommender systems using implicit feedback. Expert Systems with
Applications, 34(4):3055–3062, 2008.

[28] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data.

[29] Y. Li, L. Zou, M. T. Özsu, and D. Zhao. Time constrained continuous
subgraph search over streaming graphs. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 1082–1093, 2019.

[30] M. H. Namaki, K. Sasani, Y. Wu, and T. Ge. Beams: Bounded event
detection in graph streams. 2017 IEEE 33rd International Conference
on Data Engineering (ICDE), pages 1387–1388, 2017.

[31] O. Papapetrou, M. Garofalakis, and A. Deligiannakis. Sketch-
based querying of distributed sliding-window data streams. VLDB,
5(10):992–1003, jun 2012.

[32] S. Raghavan and H. Garcia-Molina. Representing web graphs. In
Proceedings 19th International Conference on Data Engineering (Cat.
No.03CH37405), pages 405–416, 2003.

[33] C. Song and T. Ge. Labeled graph sketches. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pages 1312–
1315, 2018.

[34] N. Tang, Q. Chen, and P. Mitra. Graph stream summarization: From
big bang to big crunch. In SIGMOD, page 1481–1496, 2016.

[35] D. Thomas, R. Bordawekar, C. C. Aggarwal, and P. S. Yu. On efficient
query processing of stream counts on the cell processor. In Proceedings
of the International Conference on Data Engineering (ICDE), page
748–759, 2009.

[36] D. Ting, J. Malkin, and L. Rhodes. Data sketching for real time analytics:
Theory and practice. In SIGKDD, 2020.

[37] C. Wang and L. Chen. Continuous subgraph pattern search over
graph streams. In 2009 IEEE 25th International Conference on Data
Engineering, pages 393–404, 2009.

[38] P. Wang, P. Jia, X. Zhang, J. Tao, X. Guan, and D. Towsley. Utilizing
dynamic properties of sharing bits and registers to estimate user cardi-
nalities over time. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 1094–1105, 2019.

[39] P. Wang, Y. Qi, Y. Zhang, and etal. A memory-efficient sketch method
for estimating high similarities in streaming sets. In SIGKDD, 2019.

[40] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and
S. Uhlig. Elastic sketch: adaptive and fast network-wide measurements.
In SIGCOMM, pages 561–575. ACM, 2018.

[41] T. Yang, L. Liu, Y. Yan, M. Shahzad, Y. Shen, X. Li, B. Cui, and G. Xie.
Sf-sketch: A fast, accurate, and memory efficient data structure to store
frequencies of data items. In 2017 IEEE 33rd International Conference
on Data Engineering (ICDE), pages 103–106, 2017.

[42] T. Yang, H. Zhang, D. Yang, Y. Huang, and X. Li. Finding significant
items in data streams. In ICDE, pages 1394–1405, 2019.

[43] Y. Zhang, J. Li, Y. Lei, et al. On-off sketch: A fast and accurate sketch
on persistence. Proc. VLDB Endow., 14(2):128–140, oct 2020.

[44] B. Zhao, X. Li, B. Tian, and etal. Dhs: Adaptive memory layout
organization of sketch slots for fast and accurate data stream processing.
In SIGKDD, 2021.

[45] P. Zhao, C. C. Aggarwal, and M. Wang. Gsketch: On query estimation
in graph streams. Proc. VLDB Endow., 5(3):193–204, Nov. 2011.

[46] Z. Zhong, S. Yan, Z. Li, D. Tan, T. Yang, and B. Cui. Burstsketch:
Finding bursts in data streams. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 2375–2383,
2021.

[47] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig. Cold
filter: A meta-framework for faster and more accurate stream processing.
In Proceedings of the International Conference on Management of Data
(SIGMOD), page 741–756, 2018.

http://burtleburtle.net/bob/hash/evahash.html
https://github.com/NewtonSketch/NewtonSketch
https://en.wikipedia.org/wiki/Newton%27s_law_of_cooling
https://en.wikipedia.org/wiki/Newton%27s_law_of_cooling
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://snap.stanford.edu/data

	Introduction
	Background and Motivations
	Our Solution

	RELATED WORK
	DEFINITION of INTIMACY USING NEWTON'S LAW OF COOLING
	Definition of Intimacy
	INTIMACY QUERY TASKS

	THE NEWTON SKETCH
	Basic Unit
	Decay-Per-Update Solution
	Newton-Observe Solution

	Newton Sketches: CM Version
	Newton Sketches: CU Version
	Newton Sketches: Space-Saving Version
	Newton Sketches: Elastic Version

	Error Bounds of Newton sketches
	Error Bound of Newton-CM
	Error Bound of Newton-SS

	Experimental Evaluation
	Experimental Setup
	Data Sets and Setup
	Metrics

	Experimental Results
	Experiments on edge query
	Experiments on global top-k query
	Experiments on local top-k query
	Experiments on subgraph query
	Experiments on throughput

	CONCLUSION
	References

