
Sliding Sketches: A Framework using Time Zones for Data
Stream Processing in Sliding Windows

Xiangyang Gou
∗

Peking University

Long He
∗

Peking University

Yinda Zhang
∗

Peking University

Ke Wang
∗

Peking University

Xilai Liu
∗

Peking University

Tong Yang
∗†

Peking University

Yi Wang
‡†

Southern University of Science and

Technology

Bin Cui
∗§

Peking University

ABSTRACT
1
Data stream processing has become a hot issue in recent years due

to the arrival of big data era. There are three fundamental stream

processing tasks: membership query, frequency query and heavy

hitter query. While most existing solutions address these queries

in fixed windows, this paper focuses on a more challenging task:

answering these queries in sliding windows. While most existing

solutions address different kinds of queries by using different algo-

rithms, this paper focuses on a generic framework. In this paper, we

propose a generic framework, namely Sliding sketches, which can

be applied to many existing solutions for the above three queries,

and enable them to support queries in sliding windows. We apply

our framework to five state-of-the-art sketches for the above three

kinds of queries. Theoretical analysis and extensive experimental

results show that after using our framework, the accuracy of exist-

ing sketches that do not support sliding windows becomes much

higher than the corresponding best prior art. We released all the

source code at Github.

CCS CONCEPTS
• Information systems→Data streammining; Data structures.

KEYWORDS
Data stream, Sliding Window, Sketch, Approximate Query

∗
Department of Computer Science and Technology, Peking University, China

†
PCL Research Center of Networks and Communications, Pengcheng Laboratory,

Shenzhen, China

‡
Institute of Future Networks, Southern University of Science and Technology

§
National Engineering Laboratory for Big Data Analysis Technology and Application

(PKU), China

1
Xiangyang Gou, Long He and Yinda Zhang contribute equally to this paper, and they

together with Ke Wang and Xilai Liu complete this work under the guidance of the

corresponding author: Tong Yang (yangtongemail@gmail.com).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, San Diego, America
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00

https://doi.org/10.1145/3219819.3219978

ACM Reference Format:
Xiangyang Gou, Long He, Yinda Zhang, Ke Wang, Xilai Liu, Tong Yang,

Yi Wang, and Bin Cui. 2020. Sliding Sketches: A Framework using Time

Zones for Data Stream Processing in Sliding Windows. In KDD ’20: The
26th ACM SIGKDD International Conference on Knowledge Discovery Data
Mining, August 23–27, 2020 San Diego, America. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3219819.3219978

1 INTRODUCTION
1.1 Background and Motivations
Data stream processing is a significant issue arising inmany applica-

tions, like intrusion detection systems [1, 2], financial data trackers

[3, 4], sensor networks [5, 6], etc. A data stream is composed of an

unbounded sequence of items arriving at high speed. Contrary to

traditional static datasets, data streams require to be processed in

real time, i.e., in one pass, and inO(1) update time. Due to the large

volume and high speed, it is difficult and often unnecessary to store

the whole data stream. Moreover, large-scale data stream process-

ing applications are usually distributed. Information exchange is

needed among multiple hosts which observe local streams. Trans-

porting complete data streams requires lots of bandwidth and is not

communication efficient. Instead, one effective choice is to maintain

a small summary of the data stream.

Sketches, a kind of probabilistic data structures, achieving mem-

ory efficiency at the cost of introducing small errors, have been

widely used as the summary of data streams. Sketches only need

small memory usage. It is possible to store them in fast memory,

such as L2 caches in CPU and GPU chips, and Block RAM in FPGA

[7]. Typical sketches include the Bloom filter [8], the CM sketch

[9], the CU sketch [10], etc. However, these sketches cannot delete
the out-dated items.

In applications of data streams, people usually focus on the most

recent items, which reflect the current situation and the future trend.

For example, in financial analysis, people focus on the current fi-

nance trend, and in intrusion detection systems, people are mainly

concerned about the recent intrusions. Therefore, it is usually nec-

essary to downgrade the significance of old items and discard them

when appropriate. Otherwise, they will bring a waste of memory,

and also introduce noise to the analysis of recent items. It is an

important issue to develop probabilistic data structures which can

automatically “forget” old items and focus on recent items.

https://doi.org/10.1145/3219819.3219978
https://doi.org/10.1145/3219819.3219978

The most popular model for recording recent items is the sliding

window model [11]. It uses a sliding window to include only the

most recent items, while the items outside are forgotten (deleted).

There are various queries which can be implemented in the sliding

window model. In this paper, we focus on three kinds of funda-

mental queries: membership query, frequency query, and heavy

hitter query. Membership query is to check if an item e is in the

sliding window. Frequency query is to report the frequency of an

item e . Heavy hitter query is to find all the items with frequencies

exceeding a threshold.

It is challenging to design a probabilistic data structure for the

sliding window model. Whenever the window slides, the oldest

item needs to be deleted. However, it is challenging to find the

oldest item, especially when the demand on memory and speed is

high. We have to implement deletions inO(1) time to catch up with

the speed of the data stream. Moreover, we cannot store all items’

ID in the sliding window, because the sliding window may be very

large and it is memory-consuming to store them.

1.2 Prior Art and Their Limitations
There have been quite a few algorithms on approximate queries in

sliding windows. These algorithms can be divided into three kinds

according to the queries they can support. The first kind supports

membership queries, like the double buffering Bloom filter [12],

the forgetful Bloom filter [13] and so on [14]. The second kind

is designed for frequency queries, like the ECM sketch [15], the

splitter windowed count-min sketch [16] and so on [17, 18]. The

third kind supports heavy hitter queries. This kind includes the

window compact space saving (WCSS) [19] and so on [20, 21].

However, existing algorithms have two main limitations. First,

these algorithm usually need a lot of memory to achieve fine-

grained deletions. When the space limitation is tight, the accuracy

of these algorithms is poor. Second, most existing algorithms only

handle one specific query in sliding windows. However, in applica-

tions various kinds of queries are usually needed, which makes a

general framework more preferred.

1.3 Our Proposed Solution
In this paper, we propose a framework, namely the Sliding
sketch. It can be applied to most of the existing sketches and adapt

them to the sliding window model. We apply our framework to the

Bloom filter [8], the CM sketch [9], the CU sketch [10], the Count

sketch [22], and the HeavyKeeper [23] for experimental evaluation

in Section 6.

Before we give a brief introduction of the basic idea of our algo-

rithm, we first introduce the common model of sketches. A typical

sketch uses an array with length m, composed of elements like

counters, bits or other data structures. We call each element in

the array a bucket in general. This array is divided into k equal-

sized segments. Each segment is associated with one hash function.

When an item e arrives, the sketch maps it into k buckets using the

k hash functions, one in each segment, and records the information

of e , like frequency or presence in these buckets. We call these k
buckets the k mapped buckets. These k mapped buckets usually

store k copies of the desired information of e . They have different

accuracy because of hash collisions. The hash collision means that

multiple items are mapped to the same bucket, and their informa-

tion is stored together, resulting in errors. In queries we report the

most accurate one in the k mapped buckets. For example, in CM

sketches, each bucket is a counter and stores the summary of the

frequencies of all items mapped into it. Each item is mapped to k
buckets, and these buckets all contain counters larger than or equal

to its frequency, and we report the smallest one in these k counters

as the frequency in query.

Most existing algorithms keep the basic structure of the sketches

and introduce different improvements to apply them to sliding

windows. It is difficult to store exactly the information in the current

slidingwindow in sketches, because it is difficult to delete all the out-

dated information. Therefore, most existing algorithms choose to

store a recent period, ω, which approximates to the sliding window.

Recall that in the common sketch model, each item has k mapped

buckets and k copies of its information. In prior work these k
mapped buckets work synchronously. In other words, these mapped

buckets store the information in the same period ω. The difference
between this period and the actual slidingwindow varies at different

query times, and can be large at some time points. We notice that in

queries we report the most accurate one in these k mapped buckets.

Therefore, we come up with a new idea. These k mapped buckets
can work asynchronously, whichmeans they store different
periods. In this way, we can achieve that whenever we query,
there is a mapped bucket which records a period very close
to the slidingwindow.We design an algorithm called a scanning
operation to achieve this. As a result, our algorithm has a much

lower error compared to prior art.

Extensive experiments and theoretical analysis show that the

Sliding sketch has high accuracy with small memory usage. Experi-

mental results show that after using our framework, the accuracy

of existing sketches that do not support sliding windows becomes

much higher than the algorithms for sliding windows. In member-

ship query, the error rate of the Sliding sketch is 10 ∼ 50 times

lower than that of the state-of-the-art sliding window algorithm.

In frequency query, the ARE of the Sliding sketch is 40 ∼ 50 times

lower than that of the state-of-the-art sliding window algorithm. In

heavy hitter query, the precision and recall of the Sliding sketch are

near to 100% and better than the state-of-the-art, and the ARE of the

frequencies of heavy hitters in the Sliding sketch is 3 ∼ 5.6 times

lower than that of the state-of-the-art sliding window algorithm.

1.4 Key Contribution
Our key contributions are as follows:

1) We propose a generic framework named the Sliding sketch,

which can be applied to most existing sketches and adapt them to

the sliding window model.

2) We apply our framework to three typical kinds of queries

in sliding windows: membership query (Bloom filters), frequency

query (sketches of CM, CU, and Count), and heavy hitter query

(HeavyKeeper). Mathematical analysis and experiments show that

the Sliding sketch achieves much higher accuracy than the state-

of-the-art. We have released all the source code at Github [24].

2 RELATEDWORK
In this section, we introduce different kinds of sketches which

can be used in our framework, and prior art of probabilistic data

structures for sliding windows.

2.1 Different Kinds of Sketches
Sketches are a kind of probabilistic data structures for data stream

summarization. Classic sketches support queries in the whole data

stream or a fixed period, but do not support the sliding window

model. According to the queries they support, we illustrate three

kinds of sketches in this paper: sketches for membership queries,

sketches for frequency queries, and sketches for heavy hitter queries.

2.1.1 Sketches for Membership Queries.
Membership query is to check if an item is in a set or not. The

most well-known sketch for membership query is the Bloom filter

[8]. It is composed of an array ofm bits. When inserting an item

e , the Bloom filter maps it to k bits with k hash functions and sets

these bits to 1. When querying an item e , the Bloom filter checks

the k mapped bits, and reports true only if they are all 1. The Bloom

filter has the property of one-side error: it only has false positives,

and no false negatives. In other words, if an item e is in set s , it will
definitely report true, but if e is not in the set, it still has probability

to report true due to hash collisions. In recent years, many variants

of Bloom filters have been proposed to meet the requirements of

different applications, like the Bloomier filter [25], the Dynamic

count filter [26], COMB [27], the shifting Bloom filter [28], etc.
2.1.2 Sketches for FrequencyQueries. Frequency query is to report

the frequency of an item. There are several well-known sketches

for frequency queries, like the CM sketch [9], the CU sketch [10]

and the Count sketch [22].

The CM sketch is composed of a counter array with k equal-

sized segments. When inserting an item e , the CM sketch maps

it to k counters with k hash functions, one in each segment, and

increases these counters by 1. When querying for an item e , it
finds the k mapped counters with the k hash functions, and reports

the minimum value among them. The CM sketch only has over-

estimation error, which means the reported frequency is no less

than the true value. The CU sketch and the Count sketch have the

same structure as the CM sketch, but different update and query

strategies. They have higher accuracy, but suffer from different

problems. The CU sketch does not support deletions and the Count

sketch has two-side error, which means the query result may be

either bigger or smaller than the true value.

Sophisticated sketches for frequency queries include the Pyramid

sketch [29], the Augmented sketch [30], and so on[31–33].

2.1.3 Sketches for Heavy Hitter Queries.
Heavy hitter query is to find all the items with frequencies ex-

ceeding a threshold in a data stream. The state-of-the-art method of

the heavy hitter query in data streams is the HeavyKeeper [23]. It

uses a strategy called count-with-exponential-decay to actively re-

move items with small frequencies through decaying, and minimize

the impact on heavy hitters. It reaches very high accuracy in heavy

hitter queries and top−k queries. Other algorithms for heavy hitter

queries include Frequent[34], Lossy counting [35], Space-Saving

[36], unbiased space saving [37], e.t.c.

2.2 Probabilistic Data Structures for Sliding
Windows

We divide the prior art of probabilistic data structures for sliding

windows into three kinds according to the queries they support. The

first kind supports membership queries, like the double buffering

Bloom filer [12], the Forgetful Bloom filter [13] and so on [14].

The second kind is designed for frequency queries, like the ECM

sketch[15], the splitter windowed count-min sketch [16] and so on

[17, 18]. The third kind supports heavy hitter queries. This kind

includes the window compact space saving (WCSS) [19] and so on

[20, 21]. Unfortunately, none of these algorithms has high accuracy

with limited memory. Moreover, most of them are specific to a

limited kinds of queries.

3 PROBLEM DEFINITION
3.1 Definitions of Data Streams
We give a formal definition of a data stream as follows:

Definition 1. Data Stream: A data stream is an unbounded
sequence of items S = {et1

1
, et2

2
, et3

3
...etii ...}. Each item ei has a time

stamp ti which indicates its arriving time. In a data stream, the same
item may appear more than once.

3.2 Definitions of Sliding Windows
There are two kinds of sliding windows: the time-based sliding

windows and the count-based sliding windows. Our framework

can be applied in both kinds of sliding windows.
2
. The definitions

of them are as follows:

Definition 2. Time-based slidingwindow: Given a data stream
S , a time-based sliding window with length N means the union of
data items which arrive in the last N time units.

Definition 3. Count-based slidingwindow: Given a data stream
S , a count-based sliding window with length N means the union of
the last N items.

3.3 Definitions of Stream Processing Tasks
Given a sliding window, There are 3 kinds of fundamental queries

which are as follows:

Definition 4. Membership query: Given a sliding windowW ,
we want to find out whether an item e is in it.

Definition 5. Frequency query: Given a sliding windowW , we
want to find out how many times an item e shows up inW , and return
the number. We call this number the frequency of item e .

Definition 6. Heavy Hitter query: Given a sliding windowW ,
we want to find out the items with frequencies exceeding a threshold.

4 SLIDING SKETCHES: BASIC VERSION
In this section, we propose a generic framework for typical data

stream processing tasks in sliding windows. First, we introduce

a model that many sketches use. Second, based on this common

model, we present a basic version of our framework.

2
The difference between the scheme for the time-based sliding window and the scheme

for the count-based sliding window is in the operation called " scanning operation",

which will be shown in Section 4.2

e

𝑺𝒕𝒖 𝑺𝒕𝒖 𝑺𝒕𝒖 𝑺𝒕𝒖

𝑺𝒕𝒖 The update strategy

A

𝒉𝟐(𝒙)𝒉𝟏(𝒙) 𝒉𝟑(𝒙) 𝒉𝟒(𝒙)

Figure 1: Update operation in the k-hash model

The query strategy𝑺𝒕𝒒

Query result

 A

𝒉𝟐(𝒙)𝒉𝟏(𝒙) 𝒉𝟑(𝒙) 𝒉𝟒(𝒙)

 e

Figure 2: Query operation in the k-hash model

4.1 A Common Sketch Model
This paper focuses on three stream processing tasks: membership

query, frequency query, heavy hitter query. The state-of-the-art

sketches for these tasks use a common model, namely k−hash
model in this paper. The details of this model is as follows:

Data structure: As shown in Figure 1 and 2, the data structure of

the k−hash model is an array which is composed of simple and

small data structures, like counters, bits or key-value pairs. We call

each element in the array a bucket in general. The array is divided

into k equal-sized segments, each associated with a hash function.

Update: To insert an item e , it maps e to k buckets with the k hash

functions, one in each segment.We call them thek mapped buckets.
It updates the k mapped buckets with an update strategy Stu ,
which varies according to the specific sketch.

Query: To query an item e , it computes the k functions and gets

the k mapped buckets. The reported result is computed from the

values in the k mapped buckets with a query strategy Stq . The
query strategy also varies according to the specific sketch.

An example using CM sketches: Different sketches use different
update and query strategies. Take the CM sketch [9] as an example.

Each bucket in the CM sketch is a counter. Its update strategy Stu
increases all the k mapped counters by 1, while its query strategy

Stq reports the minimum value among the k mapped counters.

4.2 The Sliding Sketch Model
In this paper, we propose a framework named the Sliding sketch,
which can be applied to all sketches which are consistent with the

k−hash model, and adapt them to the sliding window model.

Data Structure: In the Sliding sketch, we build an array A with

m buckets, which are divided into k equal-sized segments. In the

basic version, every bucket B has two fields Bnew and Bold . Each
field is a counter or a bit, or a key-value pair, depending on the

specific sketch we choose. Bnew stores the information mapped to

1
0

2

3

4

5
6

7

8

9

10

11

Scanning
Pointer

𝑨[𝟎]

8

Segment 1 Segment 2 Segment 3 Segment 4

𝑨[1] 𝑨[2] 𝑨[3] 𝑨[4] 𝑨[5] 𝑨[6] 𝑨[7] 𝑨[8] 𝑨[9] 𝑨[10] 𝑨[11]

5 0 8

Figure 3: Example of the scanning operation

bucket B in the most recent small period, which we call the active

Day, or Today. Bold stores the information in the previous Day,

which is called Yesterday. The length of each Day is equal to the

length of the sliding window. In other words, if the length of the

sliding window is N , a Day is a period of N time units (for time

based sliding window) or N new item arrivals (for count based

sliding window). We use information in these 2 Days to estimate

the sliding window. In Section 5.2, we will extend the Sliding sketch

and use d smaller fields instead of 2 fields in each bucket.

In the Sliding sketch, we have the following 3 operations: update

operation, scanning operation and query operation,

Update Operation: When an item e arrives, we use the k hash

functions to map the item into k buckets {Bi |1 ⩽ i ⩽ k}, one in
each segment. We update the Bnewi filed in these k mapped buckets

with the update strategy Stu of the specific sketch.

Scanning Operation: We use a scanning operation to delete the

out-dated information. We use a scanning pointer to go through

A one bucket by one bucket repeatedly. Every time it reaches the

end of the array, it returns to the beginning and starts a new scan.

The scan speed is determined by the length of the sliding window.

Specifically, for a count-based sliding window with width N , the

scanning pointer goes through
m
N buckets whenever a new item

arrives. In other words, the cycle of the scanning pointer is equal

to the period that N items arrive in the data stream. It is the same

in the time-based sliding windows, the scanning pointer scans the

array in the cycle of N time units at a constant speed. (Ifm < N ,

the pointer goes through 1 bucket in every
N
m item arrivals or time

units). Every time when the scanning pointer arrives at a bucket

B, it is the zero time of the bucket. At the zero time of a bucket,

we delete the value in Bold . Then we copy the value in Bnew to

Bold , and set Bnew to 0. In other words, a new Day starts. Today

becomes Yesterday. The information in Yesterday is out-dated, and

is deleted. The scanning operation makes different buckets have

asynchronous time, like different time zones.
Next we give an example of the scanning operation:

Example 1. An example of the scanning operation is shown in
Figure 3. In this figure we show the scanning pointer as a ring to make
it easy to understand. In this example, A is an array with length 12

and 4 segments. Each bucket in A contains 2 fields, and each field is a
counter. The scanning pointer goes through all the 12 buckets cycle

𝑫𝒂𝒚1 𝑫𝒂𝒚𝟐
𝟏

𝟑
𝑫𝒂𝒚𝟑Clock of 𝑩

Query time T

Sliding window

Time

Old New

𝟏

𝟑
𝑫𝒂𝒚𝟐

Data Stream S

Figure 4: Example of the sliding window and the Days

by cycle. In this figure, it arrives at bucket A[5], and we delete the
value in A[5]old , which is 5. Then we move the value in A[5]new , 8,
to A[5]old , and set A[5]new to 0.

QueryOperation:When querying for an item e in a Sliding sketch,
we find the k mapped buckets {Bi |1 ⩽ i ⩽ k} with the k hash

functions. Then we get k value pairs: {(Bi
new ,Bi

old)|1 ⩽ i ⩽ k}.
At last, we get the query result with a strategy which depends on

the need of applications and the specific sketch. For example, we

can use the following strategy.

The Sum Strategy: We compute k sums {Sum(Bi) = Bi
new +

Bi
old |1 ⩽ i ⩽ k}, and use the query strategy Stq of the specific

sketch to get the result from these k sums. For example, if the

specific sketch is the CM sketch [9], we report the minimum value

among the k sums, and if the specific sketch is the Bloom filter [8],

we return false if any of these k sums is 0 and return true otherwise.

This strategy returns the information in both Yesterday and

Today, which is a period no less than the sliding window. Therefore

it can be applied to sketches which only have over-estimation error,

such as the Bloom filter, the CM sketch, and the CU sketch. This

combination will keep the one side error property. More strategies

will be discussed in Section 5.1.

4.3 The Analysis of the Sliding Sketch Model
The key technique of the Sliding sketch is the scanning operation.

It controls the aging procedure of the array. In this section, we will

analyze this operation in detail, and give a brief analysis about the

accuracy of the Sliding sketch.

Firstwe analyze the periodwe record in the Sliding Sketch.
In each bucket B, we store the information of the items mapped

to it in the active Day, or Today in Bnew field, and the previous

Day, or Yesterday in Bold field. In the basic version, each Day is

equal to the length of the sliding window. At query time T , only
δ (0 < δ ⩽ 1) of Today has passed. Therefore, the sliding window

includes δ of Today and the last 1 − δ of Yesterday. Both Bold and

Bnew field are relevant to the sliding window. Notice that different

buckets have different δ because of time difference.

Second, we use an example to explain the relationship be-
tween the Days and the sliding window.

Example 2. An example of the Days in bucket B and the sliding
window of the data stream is shown in Figure 4. In this example,
the query time T is in the 3rd Day in bucket B. At query time, 1

3
of

Today has passed. The length of the sliding window is equal to one
Day, thus Day3 is only 1

3
of the sliding window, and the other 2

3
is

in Yesterday Day2. We record both the information in Yesterday and

Today to estimate the Sliding window. Notice that different buckets
are asynchronous, δ = 1

3
only in this bucket B.

Nextwe analyze the influence of the jet lag δ and the value
ranges of δ in the k mapped buckets of an item. Obviously, δ
will influence the accuracy of our estimation a lot. The smaller δ is,

the more accurate Bold + Bnew is, as it has smaller over-estimation

error and is more close to the true answer. On the other hand, the

bigger δ is, the more accurate Bnew is, as it has smaller under-

estimation error. Because the scanning pointer goes through the

array at constant speed, δ depends on the distance between the

bucket and the scanning pointer. Assuming the scanning pointer is

at the qth bucket at query time, for a bucket with index p, δ in this

bucket can be computed as follows:
δ =

q − p

m
(p < q)

δ = 1 −
p − q

m
(p ⩾ q)

(1)

Derivation of the equation is shown in the Appendix B.2.

In the Sliding sketch, each item is mapped to k buckets. These

mapped buckets have different δ because of the scanning operation.

We can prove that for each item e , there must be a mapped bucket

B′
where 0 < δ < 2

k , and a mapped bucket B′′
where

k−2
k < δ ⩽ 1.

For other k − 2 mapped buckets, the value range is 0 < δ ⩽ 1.

Detailed analysis is shown in the Appendix B.2.

At last we give a brief analysis of the accuracy of the basic
version. The value ranges of δ in the k mapped buckets give a

guarantee of the accuracy. For example, when we use the sum

strategy in the Sliding CM sketch, it only has over-estimation error

and the result it returns is summarization in a period of 1 ∼ k+2
k

sliding windows. The analysis is as follows. When querying an item

e , Sum(Bi) in each mapped bucket Bi summarizes the frequency of

items mapped to it in Today and Yesterday, which is 1 + δ times of

the sliding window. Because this period is larger than the sliding

window, and the CM sketch only has over-estimation error, we

know that the query result is no less than the true value. As stated

above, there must be a mapped bucket B′
where 0 < δ < 2

k . In this

bucket, Sum(B′) contains the summarization of 1 ∼ k+2
k sliding

windows. Because the query strategy of in the CM sketch is to find

the smallest mapped counter, B′
guarantees that the final result will

be near to the frequency of e in 1 ∼ k+2
k sliding windows. Detailed

accuracy analysis is shown in the technical report [24].

5 SLIDING SKETCH OPTIMIZATIONS
5.1 More Query Strategies
As stated above, there are many strategies to get the query result

for an item e with the k value pairs {(Bi
new ,Bi

old)|1 ⩽ i ⩽ k}.
Below are a few examples:

Under-estimation Strategy: We can only use information in

Today in the k mapped buckets to get an under-estimation of the

result. In this strategy, we find the k mapped buckets {Bi |1 ⩽ i ⩽
k}, and get k values {Bi

new |1 ⩽ i ⩽ k}. Then we use the query

strategy Stq of the specific sketch to get a result from these k values.

As Today is only δ of the sliding window and 0 < δ ⩽ 1, this usually

gives an under-estimation. This strategy is suitable for the sketches

which have under-estimation error or have two-side error, like the

Count sketch [22] and the HeavyKeeper [23].

Corrected Result: In each mapped bucket, we can compute

the jet lag in it. Therefore, we know the approximate ratio of the

length of the Today and Yesterday against the sliding window. We

can divide the queried results of the sum strategy or the under-

estimation strategy with the corresponding ratio to correct the

result. This strategy can be used when the stream has a nearly

steady throughput.

5.2 Using More Fields
In the basic version, we set 2 fields in each bucket. When the mem-

ory is sufficient, we can use d fields {B j |1 ⩽ j ⩽ d} in each bucket

B. These d fields record the information in the last d Days. If we

suppose that Today is Dayt , B
j
records information in Dayt−j+1.

In this case, each Day should be
1

d−1 of the sliding window. The

basic operations in the d-field version are as follows:

Update Operation: When an item e arrives, we use the k hash

functions to map the item into k buckets {Bi |1 ⩽ i ⩽ k}, one in
each segment. We update the Bi

1
field in these k mapped buckets

with strategy Stu of the specific sketch.

The Scanning Operation. The scanning pointer scans
(d−1)×m

N
buckets each time an item arrives or the clock increases. When the

scanning pointer arrives at bucket B, we set B j = B j−1(2 ⩽ j ⩽ d)
and B1 = 0, because a newDay starts, and all the stored information

becomes one Day older.

The Query Operation. When querying an item e , we find the k
mapped buckets {Bi |1 ⩽ i ⩽ k} for the queried item e with the

k hash functions. Then we get k sets of values: {Bi
j | 1 ⩽ j ⩽

d, 1 ⩽ i ⩽ k}. At last, we get the query result based on these k
sets of values with a strategy. The strategy depends on the need

of applications and the specific sketch. Strategies mentioned in

Section 5.1 can all be used.

When we use multiple fields, the accuracy may become higher.

The jet lag δ is still the same as the basic version. As Days in each

bucket become
1

d−1 of the sliding window, the error brought by

approximation of the sliding window also becomes
1

d−1 . However,

increasing d does not necessarily bring improvements in accuracy.

When using the same amount of memory, enlarging d means the

length of the array becomes smaller, and the error brought by hash

collisions will increase. The trade off among the number of fields d ,
the length of the arraym, and the number of segments k depends

on specific sketches, and experimental attempt is recommended

in applications. We carried out an experiment of parameter d in

Sliding HeavyKeeper. The result is in the technical report [24].

6 PERFORMANCE EVALUATION
In this section, we apply the Sliding sketch to five kinds of sketches:

the Bloom filter [8], the CM sketch [9], the CU sketch [10], the

Count sketch [22] and the HeavyKeeper [23]. We call these specific

schemes the Sliding Bloom filter, the Sliding CM sketch, the Sliding

CU sketch, the Sliding Count sketch and the Sliding HeavyKeeper,

respectively. We compare them with the state-of-the-art sliding

window algorithms in different queries under the same memory

usage. We also analysis the impact of the number of fields d in the

Table 1: Abbreviations of Algorithms in Experiments
Abbreviation Full name

Sl-BF Sliding Bloom Filter

FBF Forgetful Bloom Filter[13]

SWBF Technique in [43] applied to the Bloom filter

Sl-CM Sliding CM Sketch

Sl-CU Sliding CU Sketch

Sl-Count Sliding Count Sketch

ECM Exponential Count-Min Sketch[15]

SWCM Splitter Windowed Count-Min Sketch[16]

Sl-HK Sliding HeavyKeeper

λ-sampling λ-sampling Algorithm[21]

WCSS Window Compact Space-Saving[19]

Sliding sketch. The result is shown in the technical report [24] due

to the space limitation.

6.1 Experimental Setup
Datasets:
1) IP Trace Dataset: IP trace dataset contains anonymized IP trace

streams collected in 2016 from CAIDA [38]. Each item is identified

by its source IP address (4 bytes).

2) Web Page Dataset: We download Web page dataset from the

website [39]. Each item (4 bytes) represents the number of distinct

terms in a web page.

3) Network Dataset: The network dataset contains users’ posting

history on stack exchange website [40]. Each item has three values

u,v, t , which means user u answered user v ′
s question at time t.

We use u as the ID and t as the timestamp of an item.

4) Synthetic Dataset: By using Web Polygraph [41], an open

source performance testing tool, we generate the synthetic dataset,

which follows the Zipf [42] distribution. This dataset has 32M items,

and the skewness is 1.5. The length of each item is 4 bytes.

Implementation: We implemented all the algorithms in C++

andmade them open sourced [24]. The hash functions are 32-bit Bob

Hash (obtained from the open source website
3
) with different initial

seeds. All of the abbreviations of algorithmswe use in the evaluation

and their full name are shown in Table 1. We conducted all the

experiments on a machine with two 6-core processors (12 threads,

Intel Xeon CPU E5-2620 @2 GHz) and 62 GB DRAM memory. Each

processor has three levels of cache: one 32KB L1 data cache and

one 32KB L1 instruction cache for each core, one 256KB L2 cache

for each core, and one 15MB L3 cache shared by all cores.

Metrics: In experiment, we discover that after reading enough

items (usually 1 ∼ 2 window sizes), the experiment result will be-

come stable. We measure the metrics whenever the window slides

1

5
N and compute the average value (N is the length of the sliding

window). We use the average value to represent the experiment

result at given parameter setting. The error bar represents the min-

imal value and the maximum value. We use the following metrics

to evaluate the performance of our algorithms:

1) Error Rate in Membership Estimation: Ratio of the number

of incorrectly reported instances to all instances being queried. We

use error rate because FBF and SW-BF have two-side error. The

3
burtleburtle.net/bob/hash/evahash.html

query set we use include all the n distinct items in the present

sliding window and n items which are not in the sliding window.

2) Average Relative Error (ARE) in Frequency Estimation:

1

|Ψ |

∑
ei ∈Ψ

| fi − f̂i |

fi
, where fi is the real frequency of item ei , f̂i is

its estimated frequency. Ψ is the query set. We query the dataset

by querying each distinct item once in the sliding window.

3) Precision Rate in finding Heavy Hitter: Ratio of the number

of correctly reported instances to the number of reported instances.

4) Recall Rate in finding Heavy Hitter: Ratio of the number of

correctly reported instances to the number of correct instances.

5) Average Relative Error (ARE) in finding Heavy Hitter:

1

|Ψ |

∑
ei ∈Ψ

| fi − f̂i |

fi
, where fi is the real frequency of item ei , f̂i

is its estimated frequency, and Ψ is the real heavy hitters set in the

present sliding window.

6) Speed:Million operations (insertions) per second (Mops). Speed

experiments are repeated 100 times to ensure statistical significance.

6.2 Evaluation on Membership Query
Parameter Setting: We compare 3 approaches: Sl-BF, FBF, and

the SWBF. Let k be the number of hash functions, and let d be the

number of fields in each bucket. For our Sl-BF, we set k = 10, d = 2.

For FBF, the parameters are set according to the recommendation of

the authors. For SWBF, we use a 2-level structure. In the first level

we split the sliding window into 16 blocks, and in the second level

we split the sliding window into 8 blocks. For each block, we use

a small bloom filter with 3 hash function. Details of the algorithm

can be seen in the original paper [43]. For each dataset, we read

500k items. We set the length of the sliding window N = 100k. We

compare error rate and insertion speed of these algorithms under

the same memory usage.

Error Rate (Figure 5(a)-5(d)): Our results show that the error

rate of Sl-BF is about 10 times lower than the prior art when the

memory is set to 200KB. When the memory is increased to 500KB,

the Error Rate of Sl-BF is up to 50 times lower than state-of-the-art.

This difference is because we can record the presence of items in

a period very close to the sliding window with only one extra bit

in each bucket. However, prior algorithms need more complicated

structures to achieve a good approximation of the sliding window,

which is still not as good as ours. This limits the length of Bloom

filters when the memory usage is fixed and enlarges the influence of

hash collisions. It is similar in the experiments of frequency query.

Insertion Speed (Figure 6(a)-6(d)): Our results show that the

insertion speed of Sl-BF is about 2 ∼ 3 times faster than FBF. The

speed of the SWBF is higher than our algorithm, but its accuracy is

much poorer.

6.3 Evaluation on Frequency Query
Parameter Setting:We compare 5 approaches: Sl-CM, Sl-CU, Sl-

Count, ECM and SWCM. Let k be the number of hash functions, and

let d be the number of fields in each bucket. For our Sliding sketch,

we set k = 10, d = 2. For ECM and SWCM, the parameters are set

according to the recommendation of the authors. For each dataset,

we read 100k items. We set the length of the sliding window N =

50k. We compare ARE and insertion speed among the 5 approaches

under the same memory usage.

ARE (Figure 7(a)-7(d)):Our results show that the ARE of Sl-CM

is about 150 and 40 times lower than ECM and SWCM respectively

when the memory is set to 2MB. The ARE of Sl-CU is about 200

and 50 times lower than ECM and SWCM respectively. The ARE

of Sl-Count is about 150 and 40 times lower than ECM and SWCM

respectively. This superiority comes from the same reason as ex-

plained in the membership query.

Insertion Speed (Figure 8(a)-8(d)): Our results show that the

insertion speed of Sl-CM is about 25 and 3.9 times faster than ECM

and SWCM respectively when memory is set to 2MB. The insertion

speed of Sl-CU is about 18.6 and 3.2 times faster than ECM and

SWCM respectively. The insertion speed of Sl-Count is about 20

and 3.4 times faster than ECM and SWCM respectively.

6.4 Evaluation on Heavy Hitter Query
Parameter Setting:We compare 3 approaches: Sl-HK, λ-sampling

and WCSS. We only show the results of IP trace dataset and Web

page dataset in this experiment due to space limitation. Experimen-

tal results of other datasets can be found in the technical report

[24]. Let k be the number of hash functions, and let d be the number

of fields in each bucket. For our Sliding sketch, we set k = 10,d = 4.

For λ-sampling and WCSS, the parameters are set according to the

recommendation of the authors. For each dataset, we read 10M

items. We set the length of the sliding window N = 1M, and vary

the memory usage between 100KB and 200 KB. When the frequency

of an item in the present sliding window is more than 1000, we

consider it as a heavy hitter. We compare precision rate, recall

rate, ARE and insertion speed of the 3 approaches under the same

memory usage.

Precision Rate and Recall Rate (Figure 9(a)-10(b)): Our re-
sults show that both precision rate and recall rate of Sl-HK achieve

nearly 100%. λ-sampling starts to work only after memory size is

more than 160KB. The precision rate and recall rate is 0 before.

As for WCSS, although the recall rate can reach nearly 100%, the

precision rate is much lower than Sl-HK. Our results show that the

precision rate of Sl-HK is about 1.7 times higher than WCSS when

memory is set to 200KB. The recall rate is about 2.5 times higher

than λ-sampling when memory is set to 200KB.

ARE (Figure 11(a)-11(b)): Our results show that the ARE of Sl-

HK is much lower than the prior art. To be specific, when memory

usage is 200KB, it is about 17.4 times lower than λ-sampling, and

5.6 times lower than WCSS.

Insertion Speed (Figure 12(a)-12(b)): Our results show that

the insertion speed of Sl-HK is about 1.42 times faster than λ-
sampling. Although the insertion speed of Sl-HK is slightly slower

than WCSS, the accuracy performance is much better than WCSS.

The superiority of Sl-HK is due to 2 reasons. First, HeavyKeeper

algorithm can get a much higher accuray in heavy hitter queries

compared to prior art. By adapting it to sliding windows, we obtain

its superiority. Second, our Sliding sketch framework has a better

approximation of the sliding window compared to other algorithms.

These 2 strengths combine together and help Sl-HK out-perform

other algorithms.

200 300 400 500
Memory(KB)

0.00

0.05

0.10

E
rr

or
R

at
e

FBF
SW-BF
Sl-BF

(a) IP trace.

200 300 400 500
Memory(KB)

0.00

0.05

0.10

E
rr

or
R

at
e

FBF
SW-BF

Sl-BF

(b) Web page.

200 300 400 500
Memory(KB)

0.00

0.05

0.10

E
rr

or
R

at
e

FBF
SW-BF

Sl-BF

(c) Network dataset.

200 300 400 500
Memory(KB)

0.00

0.05

0.10

E
rr

or
R

at
e

FBF
SW-BF
Sl-BF

(d) Synthetic dataset.

Figure 5: Error Rate of Membership Query.

200 300 400 500
Memory(KB)

0.0

0.5

1.0

1.5

Sp
ee

d(
M

op
s)

FBF
SW-BF

Sl-BF

(a) IP trace.

200 300 400 500
Memory(KB)

0.0

0.5

1.0

1.5
Sp

ee
d(

M
op

s)

FBF
SW-BF

Sl-BF

(b) Web page.

200 300 400 500
Memory(KB)

0.0

0.5

1.0

1.5

Sp
ee

d(
M

op
s)

FBF
SW-BF

Sl-BF

(c) Network datset.

200 300 400 500
Memory(KB)

0

1

2

Sp
ee

d(
M

op
s) FBF

SW-BF
Sl-BF

(d) Synthetic dataset.

Figure 6: Insertion Speed of Membership Query.

1 2 3
Memory(MB)

0.01

1

100

A
R

E

ECM
SWCM
Sl-CM

Sl-CU
Sl-Count

(a) IP trace

1 2 3
Memory(MB)

0.01

1

100

A
R

E

ECM
SWCM
Sl-CM

Sl-CU
Sl-Count

(b) Web page

1 2 3
Memory(MB)

0.01

1

100

A
R

E
ECM
SWCM
Sl-CM

Sl-CU
Sl-Count

(c) Network dataset

1 2 3
Memory(MB)

0.01

1

100

A
R

E

ECM
SWCM
Sl-CM

Sl-CU
Sl-Count

(d) Synthetic dataset

Figure 7: ARE of Frequency Query.

1 2 3 4
Memory(MB)

0.0

0.5

1.0

In
se

rt
io

n
Sp

ee
d(

M
op

s) ECM
SWCM
Sl-CM

Sl-CU
Sl-Count

(a) IP trace

1 2 3 4
Memory(MB)

0.0

0.5

1.0

In
se

rt
io

n
Sp

ee
d(

M
op

s) ECM
SWCM
Sl-CM

Sl-CU
Sl-Count

(b) Web page

1 2 3 4
Memory(MB)

0.0

0.5

1.0

In
se

rt
io

n
Sp

ee
d(

M
op

s) ECM
SWCM
Sl-CM

Sl-CU
Sl-Count

(c) Network dataset

1 2 3 4
Memory(MB)

0.0

0.5

1.0

In
se

rt
io

n
Sp

ee
d(

M
op

s) ECM
SWCM
Sl-CM

Sl-CU
Sl-Count

(d) Synthetic dataset

Figure 8: Insertion Speed of Frequency Query.

100 150 200
Memory(KB)

0.0

0.5

1.0

Pr
ec

is
io

n
R

at
e

λ -sampling
Sl-HK
WCSS

(a) IP trace

100 150 200
Memory(KB)

0.0

0.5

1.0

Pr
ec

is
io

n
R

at
e

λ -sampling
Sl-HK
WCSS

(b) Web page

Figure 9: Precision Rate of Heavy Hitter Query.

7 CONCLUSION
Data stream processing in sliding windows is an important and

challenging work. We propose a generic framework in this paper,

namely the Sliding sketch, which can be applied to most existing

sketches and answer various kinds of queries in sliding windows.

We use our framework to address three fundamental queries in

100 150 200
Memory(KB)

0.0

0.5

1.0

R
ec

al
lR

at
e

λ -sampling
Sl-HK
WCSS

(a) IP trace

100 150 200
Memory(KB)

0.0

0.5

1.0

R
ec

al
lR

at
e

λ -sampling
Sl-HK
WCSS

(b) Web page

Figure 10: Recall Rate of Heavy Hitter Query.

sliding windows: membership query (the Bloom filter), frequency

query (the CM sketch, the CU sketch, and the Count sketch) and

heavy hitter query (HeavyKeeper). Theoretical analysis and experi-

mental results show that our algorithm has much higher accuracy

than prior arts. We believe our framework is suitable for all sketches

that use the common sketch model.

100 150 200
Memory(KB)

0.0

0.5

1.0

A
R

E λ -sampling
Sl-HK
WCSS

(a) IP trace

100 150 200
Memory(KB)

0.0

0.5

1.0

A
R

E λ -sampling
Sl-HK
WCSS

(b) Web page

Figure 11: ARE of Heavy Hitter Query.

100 150 200
Memory(KB)

0.0

0.5

1.0

In
se

rt
io

n
Sp

ee
d(

M
op

s) λ -sampling Sl-HK WCSS

(a) IP trace

100 150 200
Memory(KB)

0.0

0.5

1.0

In
se

rt
io

n
Sp

ee
d(

M
op

s) λ -sampling Sl-HK WCSS

(b) Web page

Figure 12: Insertion Speed of Heavy Hitter Query.

ACKNOWLEDGEMENT
This work is supported by National Key RD Program of China

(No. 2018YFB1004403), National Natural Science Foundation of

China (NSFC) (No. 61832001, 61702016, 61672061), PKU-Baidu Fund

2019BD006 and Beijing Academy of Artificial Intelligence (BAAI),

and the project of "FANet: PCL Future Greater-Bay Area Network

Facilities for Large-scale Experiments andApplications (No. LZC0019).

REFERENCES
[1] Sang Hyun Oh, Jin Suk Kang, Yung Cheol Byun, Taikyeong T Jeong, andWon Suk

Lee. Anomaly intrusion detection based on clustering a data stream. In Acis
International Conference on Software Engineering Research, Management and
Applications, pages 220–227, 2006.

[2] Mustafa Amir Faisal, Zeyar Aung, John R. Williams, and Abel Sanchez. Securing

advanced metering infrastructure using intrusion detection system with data

stream mining. In Pacific Asia Conference on Intelligence and Security Informatics,
pages 96–111, 2012.

[3] Bryan Ball, Mark Flood, H. V. Jagadish, Joe Langsam, Louiqa Raschid, and

Peratham Wiriyathammabhum. A flexible and extensible contract aggregation

framework (caf) for financial data stream analytics. pages 1–6, 2014.

[4] Lajos Gergely Gyurkó, Terry Lyons, Mark Kontkowski, and Jonathan Field. Ex-

tracting information from the signature of a financial data stream. Quantitative
Finance, 2013.

[5] Ruo Hu. Stability analysis of wireless sensor network service via data stream

methods. Applied Mathematics Information Sciences, 6(3):793–798, 2012.
[6] Carlos M. S. Figueiredo, Carlos M. S. Figueiredo, Eduardo F. Nakamura, Luciana S.

Buriol, Antonio A. F. Loureiro, Antnio Otvio Fernandes, and Claudionor J. N. Jr

Coelho. Data stream based algorithms for wireless sensor network applica-

tions. In International Conference on Advanced Information NETWORKING and
Applications, pages 869–876, 2007.

[7] FPGA data sheet [on line]. http://www.xilinx.com/support/

documentation/data_sheets/ds180_7Series_Overview.pdf.

[8] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[9] Graham Cormode and S Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[10] Cristian Estan and George Varghese. New directions in traffic measurement and

accounting. ACM SIGMCOMM CCR, 32(4), 2002.
[11] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining

stream statistics over sliding windows. Siam Journal on Computing, 31(6):1794–
1813, 2002.

[12] F. Chang, Wu Chang Feng, and Kang Li. Approximate caches for packet classifi-

cation. In Joint Conference of the IEEE Computer and Communications Societies,
pages 2196–2207 vol.4, 2004.

[13] Rajath Subramanyam, Indranil Gupta, Luke M. Leslie, and Wenting Wang. Idem-

potent distributed counters using a forgetful bloom filter. Cluster Computing,
19(2):879–892, 2016.

[14] Yoon. Aging bloom filter with two active buffers for dynamic sets. IEEE Transac-
tions on Knowledge Data Engineering, 22(1):134–138, 2009.

[15] Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis. Sketch-

based querying of distributed sliding-window data streams. Proceedings of the
VLDB Endowment, 5(10):992–1003, 2012.

[16] Nicoló Rivetti, Yann Busnel, and Achour Mostefaoui. Efficiently Summarizing
Distributed Data Streams over Sliding Windows. PhD thesis, LINA-University of

Nantes; Centre de Recherche en Économie et Statistique; Inria Rennes Bretagne

Atlantique, 2015.

[17] Ho Leung Chan, Tak Wah Lam, Lap Kei Lee, and Hing Fung Ting. Continuous
Monitoring of Distributed Data Streams over a Time-Based Sliding Window. 2009.

[18] Graham Cormode and Ke Yi. Tracking distributed aggregates over time-based

sliding windows. In ACM Sigact-Sigops Symposium on Principles of Distributed
Computing, pages 213–214, 2011.

[19] Ben Basat Ran, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in

streams and sliding windows. In IEEE INFOCOM 2016 - the IEEE International
Conference on Computer Communications, pages 1–9, 2016.

[20] L. K. Lee and H. F. Ting. A simpler and more efficient deterministic scheme

for finding frequent items over sliding windows. In ACM Sigmod-Sigact-Sigart
Symposium on Principles of Database Systems, pages 290–297, 2006.

[21] Hung, Y. S Regant, Lee, Lap-Kei, Ting, andH.F. Finding frequent items over sliding

windows with constant update time. Information Processing Letters, 110(7):257–
260, 2010.

[22] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items

in data streams. In Automata, Languages and Programming. Springer, 2002.
[23] Junzhi Gong, Tong Yang, Haowei Zhang, Hao Li, Steve Uhlig, Shigang Chen,

Lorna Uden, and Xiaoming Li. Heavykeeper: An accurate algorithm for finding

top-k elephant flows. In 2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 909–921, Boston, MA, 2018. USENIX Association.

[24] “source code of sliding sketches and other sketches”. https://github.com/

sliding-sketch/Sliding-Sketch.

[25] David Nelson. The bloomier filter: An efficient data structure for static support

lookup tables. Proc Symposium on Discrete Algorithms, 2004.
[26] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J. L. Larriba-Pey. Dynamic

count filters. Acm Sigmod Record, 35(1):26–32, 2006.
[27] Fang Hao, M Kodialam, T. V Lakshman, and Haoyu Song. Fast multiset mem-

bership testing using combinatorial bloom filters. In INFOCOM, pages 513–521,

2009.

[28] Tong Yang, Alex X. Liu, Muhammad Shahzad, Yuankun Zhong, Qiaobin Fu, Zi Li,

Gaogang Xie, and Xiaoming Li. A shifting bloom filter framework for set queries.

Proceedings of the Vldb Endowment, 9(5):408–419, 2016.
[29] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. Pyramid sketch:

a sketch framework for frequency estimation of data streams. Proceedings of the
Vldb Endowment, 10(11), 2017.

[30] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and

more accurate stream processing. In International Conference on Management of
Data, pages 1449–1463, 2016.

[31] Jiecao Chen and Qin Zhang. Bias-aware sketches. Proceedings of the VLDB
Endowment, 10(9):961–972, 2017.

[32] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide

measurements. In ACM SIGCOMM 2018.
[33] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig.

Cold filter: A meta-framework for faster and more accurate stream processing. In

Proceedings of the 2018 International Conference on Management of Data, SIGMOD

’18, pages 741–756, New York, NY, USA, 2018. ACM.

[34] Erik DDemaine, Alejandro López-Ortiz, and J IanMunro. Frequency estimation of

internet packet streamswith limited space. In European Symposium on Algorithms,
pages 348–360. Springer, 2002.

[35] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts

over data streams. In VLDB’02: Proceedings of the 28th International Conference
on Very Large Databases, pages 346–357. Elsevier, 2002.

[36] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation

of frequent and top-k elements in data streams. In International Conference on
Database Theory, pages 398–412. Springer, 2005.

[37] Daniel Ting. Data sketches for disaggregated subset sum and frequent item

estimation. 2017.

[38] Caida anonymized 2016 internet traces. http://www.caida.org/data/overview/.

[39] Real-life transactional dataset. http://fimi.ua.ac.be/data/.

[40] The Network dataset Internet Traces. http://snap.stanford.edu/data/.

[41] Alex Rousskov and Duane Wessels. High-performance benchmarking with web

polygraph. Software: Practice and Experience, 34(2):187–211, 2004.
[42] David MW Powers. Applications and explanations of Zipf’s law. In Proc. EMNLP-

CoNLL. Association for Computational Linguistics, 1998.

[43] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles

over sliding windows. In ACM Sigmod-Sigact-Sigart Symposium on Principles of
Database Systems, pages 286–296, 2004.

https://github.com/sliding-sketch/Sliding-Sketch
https://github.com/sliding-sketch/Sliding-Sketch
http://www.caida.org/data/overview/
http://fimi.ua.ac.be/data/
http://snap.stanford.edu/data/

A OPEN SOURCE DESCRIPTION
Our source codes are available at Github [24]. The repository con-

tains a demo to show how to use this algorithmswith a small dataset.

We implement our sliding sketch in C++ and we have tested our pro-

gram on Ubuntu 14.04.5 LTS (GNU/Linux 3.16.0-50-generic x86_64).

Then we introduce the usage of each folder of this repository in

details.

1. The src folder contains all the algorithms in our experiments.

As shown in the following table, we divide these algorithm into

three parts.

Task Algorithms

Membership query Sl-BF, FBF, SWBF

Frequency query Sl-CM,Sl-CU,Sl-Count,ECM,SWCM

HeavyHitter query Sl-HK,λ−sampling,WCSS

(1) The Frequency folder contains five algorithms on frequency

query.

Our sliding sketch used on frequency query is in the clock .c and
clock .h file under the folder Slidinд_Sketch. The functionCM_Init
represents the insertion process of Sl-CM, the function CU _Init
represents the insertion process of Sl-CU, and the functionCO_Init
represents the insertion process of Sl-Count. The query process

of Sl-CO is implemented by the function CO_Query. The query

process of Sl-CM and Sl-CU is implemented by the function Query,
because their query process is the same. The function Query and

CO_Query will return a integer variable to report how many times

the item appears in the sliding window.

The ECM algorithm is in the sketch.h and sketch.cpp files under

the folder ECM . The functionupdate in class ECM represents the in-

sertion process of ECM. The query process of ECM is implemented

by the function query in class ECM, it will return a integer variable

to report how many times the item appears in the sliding window.

The SWCM algorithm is in the splitter .h and splitter .cpp files

under the folder SWCM . The function update in class Bucket repre-

sents the insertion process of SWCM. The query process of SWCM

is implemented by the function query in class Bucket, it will return

a integer variable to report how many times the item appears in

the sliding window.

(2) TheHeavyHitter folder contains threes algorithms on heavy

hitter query.

Our sliding sketch used on heavy hitter query is in theheavykeeper .h
file under the folder Sl_HK . The function Insert represents the in-
sertion process of Sl-HK. And the function num_query represents

the query process of Sl-HK. The function num_query will return a

integer variable to report how many times the item appears in the

sliding window.

The λ−sampling is in the summary.h and summary.cpp files un-

der the folder lambda_Alдorithm. The function Init represents the
insertion process of λ−sampling. And the function Query repre-

sents the query process, it will return a integer variable to report

how many times the item appears in the sliding window.

The WCSS is in the wcss .h file under the folder WCSS . The
function add represents the insertion process. And the function

query represents the query process, it will return a integer variable

to report how many times the item appears in the sliding window.

(3) TheMembership folder contains threes algorithms on mem-

bership query.

Our sliding sketch used onmembership query is in the slidinд_bloom.h
and slidinд_bloom.cpp files. The function Init represents the inser-
tion process of Sl-BF. And the function Query represents the query

process of Sl-BF. The functionQuery will return a boolean variable

to report whether the item is in the sliding window.

The FBF is in the f orдet_bloom.h and f orдet_bloom.cpp files.

The function Init represents the insertion process of FBF. And the

function Query represents the query process of FBF. The function

Query will return a boolean variable to report whether the item is

in the sliding window.

The SWBF is in the SWSketch.h under the folder SW − BF . The
function insert represents the insertion process. And the function

query represents the query process, it will return a boolean variable

to report whether the item is in the sliding window.

2. The data folder consists of the trace for test and each 8 bytes

in a trace is an item.

3. The demo folder consists of a shell file – demo.sh, which can

make and run our program in src folder. Users can run it by typing

/bin/sh demo/demo.sh into the terminal.

B MATHEMATICAL ANALYSIS
In this part we analyze the memory and time cost of the Sliding

sketch, and analyze the value range of δ . The accuracy of the Slid-

ing sketch depends on the specific sketch and the query strategy,

and we give the analysis of the the accuracy of 3 kinds of Sliding

sketch applications as examples, namely the Sliding Bloom filter

for the membership query, the Sliding CM sketch for the frequency

query, and the Sliding HeavyKeeper for the heavy hitter query. The

analysis of these 3 examples is shown in the technical report [24]

because of space limitation.

B.1 Analysis of memory and time cost
The space cost of the Sliding sketch is d times of the specific sketch,

where d is the number of fields in each bucket. This memory cost

is better than most prior art of algorithms for sliding windows.

The time cost of update in every item arrival is O(1). The move of

the scanning pointer can be implemented in another thread, or in

the inserting process of each item. As whenever an item arrives or

the clock increases,
(d−1)×m

N buckets need to be scanned, the time

cost of scanning buckets is O((d−1)×mN), which is usually a small

constant. For example, in the experiment of Sliding HeavyKeeper,

the length of the sliding window N = 1M , the length of the array

m = 40k , and the number of fields d = 4. In this case
(d−1)×m

N is

only 1.2. Because these buckets are adjacent, reading or writing

them is usually very fast.

B.2 Analysis of the jet lag δ
B.2.1 The Computation of δ .

For each bucket/time zone B in the array, the jet lag δ , which
represents how much of the Today has passed by query time T ,
can be computed with the distance between the bucket and the

scanning pointer. Suppose the index of the bucket in the array is p,
and the position of the scanning pointer is q. The scanning pointer

moves in a constant speed and scans each bucket in
1

m Day. There

are two kinds of situations:

1) When p ⩽ q, the scanning pointer has scanned q − p buckets

after its arrival at B. Therefore

δ =
q − p

m
(p < q) (2)

2) When p > q, the scanning pointer has scanned (m − p) + q
buckets after its arrival at B. Therefore

δ =
m − p + q

m

= 1 −
p − q

m
(p ⩾ q)

(3)

For the bucket where the pointer is in, we define δ = 1.

B.2.2 The Value Range of δ .

Theorem 1. Given an item e with k mapped buckets in the Sliding
sketch, The jet lags δ in all these mapped buckets are in range (0, 1].
Moreover, There must be at least one mapped bucket with a δ smaller
than 2

k , and at least one mapped bucket with a δ larger than 1 − 2

k .

Theorem 2. Given an item e with k mapped buckets, there are at
least i − 1 mapped buckets where δ < i

k , ∀2 ⩽ i ⩽ k − 1 and there
are k mapped buckets where δ ⩽ 1.

Theorem 3. Given an item e with k mapped buckets, there are at
least i − 1 mapped buckets where δ > 1 − i

k , ∀2 ⩽ i ⩽ k − 1, and
there are k mapped buckets where δ > 0.

Proof. For each item e in the data stream, the Sliding sketch

maps it to k mapped buckets, one in each segment. Therefore there

must be a mapped bucket B′
which is in the same segment with

the scanning pointer, and we represent its index with p′. There are
two kinds of situations:

1) When p′ < q, B′
has the smallest δ among the k mapped

buckets. q − p′ is less than the length of the segment, which is
m
k .

In bucket B′
, we have

δ =
q − p′

m
<

m
k
m
=

1

k
(4)

Therefore in this bucket B′
we have 0 < δ < 1

k . In this situation the

largest δ appears in the next segment, we represent the mapped

bucket in this segment with B′′
, whose index in the array is p′′.

Then p′′ − q is less than the length of two segments, which is
2×m
k .

In bucket B′′
, we have

δ = 1 −
p′′ − q

m
> 1 −

2×m
k
m
= 1 −

2

k
(5)

Therefore in this bucket B′′
we have 1 − 2

k < δ ⩽ 1. For the other

k−2mapped buckets, as they are mapped to different segments and

each segment has the same length, the δ in them has value ranges

which form an arithmetic sequence, which is : {(
j−1
k ,

j+1
k)|1 ⩽ j ⩽

k − 2}.

2) When p′ ⩾ q, B′
has the largest δ among the k mapped

buckets. p′ − q is less than the length of the section, which is
m
k . In

bucket B′
, we have

δ = 1 −
p′ − q

m
> 1 −

m
k
m
= 1 −

1

k
(6)

Therefore, in this bucket B′
, we have

k−1
k < δ ⩽ 1. In this situation

the smallest δ appears in the last section, we represent the mapped

bucket in this section with B′′
, whose index in the array is p′′. Then

q − p′′ is less than the length of two sections, which is
2×m
k . In

bucket B′′
, we have

δ =
q − p′′

m
<

2m
k
m
=

2

k
(7)

Therefore, in this bucket B′′
, we have 0 < δ < 2

k . For the other k−2

mapped buckets, as they are mapped to different sections and each

section has the same length, the δ in them has value ranges which

form an arithmetic sequence, which is : {(
j
k ,

j+2
k)|1 ⩽ j ⩽ k − 2}.

Combining the value ranges in these 2 kinds of situations, we

can easily get Theorem 1, 2 and 3.

□

B.3 Analysis of the Accuracy
The accuracy of the Sliding sketch is influenced by the specific

sketch and the strategy we use. We analyze the accuracy of the

sliding Bloom filter, the sliding CM sketch and the sliding Heavy-

Keeper as examples. The analysis is shown in the technical report

[24] because of space limitation.

	Abstract
	1 Introduction
	1.1 Background and Motivations
	1.2 Prior Art and Their Limitations
	1.3 Our Proposed Solution
	1.4 Key Contribution

	2 Related Work
	2.1 Different Kinds of Sketches
	2.2 Probabilistic Data Structures for Sliding Windows

	3 Problem Definition
	3.1 Definitions of Data Streams
	3.2 Definitions of Sliding Windows
	3.3 Definitions of Stream Processing Tasks

	4 Sliding Sketches: Basic Version
	4.1 A Common Sketch Model
	4.2 The Sliding Sketch Model
	4.3 The Analysis of the Sliding Sketch Model

	5 Sliding Sketch Optimizations
	5.1 More Query Strategies
	5.2 Using More Fields

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Evaluation on Membership Query
	6.3 Evaluation on Frequency Query
	6.4 Evaluation on Heavy Hitter Query

	7 Conclusion
	References
	A Open Source Description
	B Mathematical Analysis
	B.1 Analysis of memory and time cost
	B.2 Analysis of the jet lag
	B.3 Analysis of the Accuracy

